Background Image
조회 수 309 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
가끔 퇴근길에 서점에 들르곤 한다. 직업이 직업이라 그런진 몰라도 항상 IT코너에 머물러 어떤 새로운 책들이 출간되었나 보게 된다. 
그러다보면 최근 유행하는 컨셉이나 아키텍쳐, 프로그래밍 언어나 개발방법론 등에 대해 트렌드가 뭔지 관찰하려고 안해도 자연히 접하게 되는 것 같다. 
그 중 최근 유행처럼 사람들 입에 오르내리기도 하고 책으로 소개되기도 하는 개념들 중 MSA(Micro Service Architecture)라는 것이 있다.
뭔가 하고 들여다보니 MSA 개념에서 다루고 있는 '독립적으로 수행되는 최소단위의 서비스' 그리고 그 서비스들의 집합으로서의 시스템과 시스템의 분할에 관한 관점 및 해석은 십수년전 주목받던 SOA(Service Oriented Architecture)가 지향하는 서비스를 구성하는 기능별 시스템의 분할과 크게 다르지 않다. 

이 글은 MSA와 SOA가 얼마나 비슷한 사상으로 소개된 개념인지를 이야기하고자 함이 아니다. 예전에도 의미있게 다뤄졌고 지금도 의미있게 받아들여지는 이러한 개념들이 시스템의 관점에서 더 좁게는 DBMS라는 시스템 소프트웨어적 관점에서 어떻게 해석될 수 있는가를 간단하게 짚어보고자 함이다. 

MSA의 개념이 제대로 구현되기 위해서는 시스템이 제공하는 서비스들간 그리고 서비스와 서비스의 수요자간의 추상화된 관계가 명확하게 정의되어야 하며 이는 분산시스템의 확장성측면에서 매우 중요한 고려사항이 된다. 매우 중요한 고려사항이 된다는 이야기는 해당 분산 시스템의 아키텍쳐를 결정하는 요소가 된다는 의미이다.

서두가 길었지만 '확장성'말고도 분산시스템의 아키텍쳐를 결정하는데 영향을 미치는 요소는 '성능(performance)', '사용성(usability)', '편의성(user convenience)', '모니터링의 용이성(monitoring)', '기능성(functionality)', '가용성(availability)' 등 여러가지가 있다.

예를들어 흔히 이중화라고 하는 replication의 경우 HA(High Availability)를 충족시키기 위한 아키텍쳐이다. RAID라는 용어를 들어보았을 것이다. data redundancy를 제공해 media(disk) 차원에서의 MTTF를 최소화하려는 아주 오래된 컨셉이다. HA라는 것은 시스템이 제공하는 서비스 총체적인 차원에서의 MTTF를 최소화하려는 redundant한 시스템 아키텍쳐이다. 
이러한 목적으로 구현된 replication은 그 구현을 위한 기술요소가 분산인 것이지 분산시스템으로서 갖고 있는 목적 자체는 HA인 것이다. 시스템 소프트웨어 개발자들이 흔히 하는 실수는 HA를 목적으로 만들어진 replication을 갖고 다른 분산시스템 예를 들어 흔히 생각해볼 수 있는 cluster(active-active가 되는)도 만들고 cdc(changed data capture)도 만들고 sharding(단순한 table partitioning이 아니라  볼륨의 증감에 따라 re-sharding이 되는 sharding을 말한다)도 만들고 그럼 된다고 생각하는 것이다. 
하지만 그런 안일한 생각이 수개월 혹은 수년의 개발기간을 거쳐 만든 분산 기능자체를 버그 덩어리 내지는 수년간 repository에서 숙성기간을 거치면서 수많은 개발자들에 의해 더럽혀지다가 결국엔 제대로 써보지도 못한채 방치되거나 버려지는 몹쓸 코드덩어리를 만들어낸다.

모두 분산을 위한 기술요소를 갖고 있음에는 틀림이 없다. 하지만 아키텍쳐는 해당 시스템의 목적에 따라 달라져야 한다. 그리고 가능한 기존 시스템에 안좋은 영향을 주지않도록 설계되어야 한다. 위에 열거한 모든 요소들을 하나의 시스템 소프트웨어에서 만족시키는 아키텍쳐를 구현하기란 쉽지 않은 일이다. 

그래서 최근의 시스템 아키텍팅의 트렌드는 단일 목적에 특화된 여러 시스템들의 정합성을 고려하여 커다란 시스템으로 엮는 것이다. 그리고 그러한 트렌드에 맞춰 손쉽게 오케스트레이션을 할 수 있도록 해주는 쿠버네티스같은 플랫폼들이 인기를 끌고 있다.  

하지만 하나의 시스템이 만약 해당 서비스에 필요한 대부분의 요소들을 모두 제공한다면? 굳이 여러 시스템을 엮어 쓸 이유가 없다. 여러 시스템을 엮는다는 것은 그만큼의 비용(데이터 처리 비용)이 증가한다. 데이터가 시스템에 들어와 사용자에게 전달될 때까지 지나치는 경로가 길어질수록 비용은 증가한다. cpu core를 예로 들어보자. data와 instruction이 전달되는 경로를 bus라고 한다. 그 bus의 길이를 보다 짧게 하려고 cache도 두고 locality를 증가시키기 위한 무수한 노력을 한다. 그러다가 하나로 안되니 두개를 붙이고 4개를 붙이고 6개를 붙이고 core수를 늘리다가 결국 특수 목적의 연산유닛이었던 GPU도 붙이고 그런다. GPU를 그냥 옆에 쓸수있게 붙여놓기만 했던 시절에는 GPU에서 처리한 데이터를 다시 cpu에서 받아 처리하는데 필요한 데이터 복제 (메모리간)비용이 상당했고 그걸 처리하기 위한 고민과 기술들이 필요했다. 그러나 지금은 하나의 칩에서 대부분의 작업을 거뜬히 해낼 수 있게 되었다. 

분산시스템도 마찬가지다. 10년전만 해도 하둡하둡하면서 하둡만이 살길인양 분산시스템을 구축하는 프로젝트에서는 너도나도 하둡개발자를 찾았지만 이젠 하둡도 쓸까말까를 고민한다. 

하나의 시스템 혹은 플랫폼이 등장할 때마다 그것을 이용한 보다 나은 조합들이 나오고 정말 최고의 조합이어서든 자본에 의해서든 적어도 2~3년은 이쪽 업계 사람들의 입에 오르내릴만한 조합들이 나오곤 한다. 그러나 분산 시스템을 이해하는 개발자 관점에서 아쉽게 느껴지는 것들이 참 많다. 그중 하나는 브랜드파워 내지는 거대자본의 투입(대대적인 글로벌 컨퍼런스의 개최라든지 프로모션과 같은 것들)이 가능한 시장의 leading company에 의해 그들이 제공하는 조합 내지는 그들의 플랫폼, 그들의 제품을 사용하지 않으면 뒤떨어질 것 같은 인식이 확산되는 경향이 최근들어 빈번하게 발생하고 있다는 것이다. 한번 이러한 인식이 형성되기 시작하면 다른 조합은 이미 고려대상이 아니게 될 뿐 아니라 서비스 차원에서 시스템을 아키텍팅하는 엔지니어들 조차 소위 '대세' 시스템 아키텍쳐를 공부하고 모방하며 뒤질세라 자신의 세미나를 발표하면서 시스템의 획일화에 기여한다. 

그러나 사실은 아니 진실은 '누구나 그렇게 해야만 할 것같은 그런 분위기'가 아니다. 위에 열거한 서로 다른 요소들이 어떤 우선순위와 가중치를 갖고 시스템에서 제공되어야 하는가에 대한 고려가 우선되어야 한다. 조합 가능한 서로 다른 시스템들의 가짓수가 늘어날수록 솔루션으로서의 분산시스템 아키텍쳐 구성의 가짓수또한 증가한다. 

그런 와중에도 대부분의 분산 아키텍쳐에 중요한 고려사항으로써 항상 포함되는 건 데이터베이스이고 데이터베이스를 관리하는 시스템이다. 스트림처리를 통해 저장할 필요없이 사용 후 바로 제거되어도 되는 데이터들을 제외한 모든 데이터들은 데이터베이스를 한번씩은 거치기 마련이기 때문이다. 

DBMS는 이러한 데이터베이스를 관리하기 위한 시스템이고 많은 진화를 거듭하면서 보다 완전한 시스템이 되어가는 중이다. 아직도 가야할 길이 많지만 적어도 30년전 oracle을 생각하면 지금의 oracle은 거의 천상계가 아닌가.

혹자는 '빅데이터 시대'가 도래하고 부터는 DBMS는 퇴물이고 이제 곧 그 자리를 다른 시스템들이 대체하게 될거라는 말들을 하곤 한다. 미안한 말이지만 당신 앞에서 이런 이야기를 던지는 사람이 시스템 컨설턴트라면 그들이 제안하는 시스템 아키텍쳐를 신뢰하지 말라고 충고하고 싶다.

'빅데이터'는 이를 처리하는 단일 시스템에 보다 효율적인 처리를 위해 새로운 처리방식 혹은 새로운 데이터 모델링을 요구하거나 해당 시스템의 처리량을 넘어선 데이터 공급량으로 인해 보다 효율적인 처리방식을 고려하도록 하는 변화된 데이터환경 자체를 비즈니스적으로 표현한 말이고 시스템적 관점에서 '사실상의 대용량(때때로 실시간의 처리가 요구되는)'을 달리 표현한 말에 지나지 않는다. ('빅데이터'라는 용어가 확산되기 시작했던 2010년대 초반 필자가 국내학회지에 기고했던 글을 참조해보면 이 문장의 의미가 더 잘 이해해될 수도 있다. 참조 문서: 데이터 환경의 변화와 분산 데이터베이스 시스템)

그러나 사실 DBMS는 사실상의 대용량 데이터를 처리하기 위한 시스템이다.
DBMS가 오래전부터 맞닥드린 데이터 환경이 바로 '대용량'이고 이 '대용량'의 기준은 점점 높아져 왔을 뿐이다. 따라서 DBMS의 고민은 다름이 아니라 애초부터 대용량이었다. 1970년대 등장한 RDBMS의 시조새격인 ingres 도 이 대용량(당시의)을 처리하기 위해 만들어졌다. 

대용량 데이터의 처리는 DBMS의 숙명과도 같은 것이다. 

'대용량'이라는 키워드와 더불어 DBMS가 항상 안고 가는 숙제가 하나 있다. 바로 '실시간'이다.
'실시간'은 시스템, 즉 DBMS의 성능과 밀접한 관련이 있다. 뭘 실시간으로 제공하느냐에 따라 아키텍쳐는 달라진다. 저장관점에서의 쓰기연산이 실시간으로 이루어져야 하는지, 아니면 검색관점에서의 읽기연산이 실시간으로 이루어져야 하는지, 아니면 읽고쓰는 대부분의 연산에서 실시간이 보장되어야 하는지, 서비스에 따라 실시간의 허용범위는 어느정도인지 등 서비스 환경에 따라 다양하다.
DBMS는 이러한 저장 데이터베이스에 대해 수행되는 읽고쓰기 연산의 결과를 상위 시스템 혹은 클라이언트로 전달하는 주체로써 실시간성을 중요하게 고려한다. 

이렇듯 DBMS는 실시간과 이전에 설명한 대용량에 대한 처리를 고민하면서 분산 DBMS로 발전한다. 

하나의 통합 서비스에서 처리해야 하는 데이터의 양이 DBMS가 처리할 수 있는 수준범위 내에 있다면 다른 시스템은 필요가 없다. 그저 데이터를 받아 DBMS로 전달하는 일만 하면 된다. 그러나 그 데이터들을 DBMS가 다 처리를 못한다. 그래서 중간에 여러 DBMS들에 실시간으로 데이터들을 분산시켜 던져주는 미들웨어 시스템을 두고 DBMS마다 처리하는 속도가 달라 처리된 시점에 필요한 놈이 가져가게 하기 위한 message queue를 둔다. message큐가 처리할 수 있는 용량에도 한계가 있고 가용 저장장치에도 한계가 있기 때문에 저장용 cache를 따로 둔다. 그리고 데이터를 소비한 후 visualization을 따로 해줘야 하는 경우 처리를 위한 시스템을 별도로 엮기도 한다. 이건 하나의 예에 불과하다. 

결국 쉽게 말하면 DBMS가 못따라가는 데이터처리를 다른 시스템들을 붙여 어떻게든 그래도 효율적으로 처리해보려는 것이다. 

그래서 DBMS는 나날이 커져만 가는 대용량에 대응할 수 있는 시스템으로 진화해야 한다. '나날이 커져만가는 대용량에 대응'하기 위한 요소가 바로 '확장성'이다. 하나의 처리 노드에서 감당할 수준을 넘어선 데이터량 때문이다. 이러한 확장성을 갖춘 DBMS는 분산 feature를 장착한 분산 DBMS라고 할 수 있다. 하지만 아직 다양한 서비스 환경에서 실시간 처리에 대한 요구를 만족시켜주는 단일 분산 DBMS는 찾아보기 힘들다. 분산 DBMS로 가야할 길은 아직 멀고 험하다. 어쩌면 일개 시스템소프트웨어 개발자에게는 영원히 끝이 보이지 않는 길일 확률이 아주 높다. 그럼에도 불구하고 DBMS의 숙명과도 같은 '대용량의 데이터를 실시간으로 처리'하기 위해 DBMS는 진화하고 또 진화해간다. 

시스템 소프트웨어 불모지인 대한민국의 국산 DBMS로서 이미 그 효용성을 입증한 큐브리드가 그렇게 진화해가길 진심으로 바란다.


  1. No Image

    DB2, Informix, Sybase ASE, Postgres DBMS 데이터를 CUBRID로 이관하는 방안에 대하여...

    DBMS 보급과 관련하여 과거와는 달리 민간 및 공공기업에서 서비스 중요도 및 비용등을 고려하여 다양한 제품을 도입하여 사용하고 있다. 뿐만 아니라 시스템 사용연한 도래, 유지보수 비용절감, 클라우드 전환 및 차세대 시스템 도입을 통해서 기존 DBMS를 다른 DBMS로 변환하는 경우가 빈번하게 발생하고 있다. DBMS 변경으로 응용체계 전환 및 데이터 전환, 운영 및 사용자 기술전환등이 수행되는데 기술적 측면 및 비용적인 부분에서 예상보다 많은 리스크를 직면하게 되기도 한다. 성공과 실패는 면밀한 전환환경에 대한 분석 및 계획과 수행하는 기술자들의 자질에(기술 및 도전적 & 긍정적 마인드) 의해 결정된다. 이러한 여러 요소들 중에서 여기서 다루고자 하는 부분은 전환에 있어 기본이면서 중요한 데이터 전환에 대한 부분이다. 큐브리드는 국산을 제외한 외산 DBMS중에 민간 및 공공기간을 통틀어 점유율이 높다고 볼 수 있는 Oracle 및 MS-SQL, MySQL에 대해서 데이터 이관 툴을 제공하고 있다. 해당 제품명은 CMT(Cubrid Migration Toolkit)이며 Linux 및 Windows 버전을 기본으로 GUI 및 Terminal 방식을 지원하고 있다. 그 이외에도 비록 시장 점유율은...
    Date2019.07.15 Category나머지... By김창휘 Views74
    Read More
  2. CUBRID GRANT ALL TABLES

    CUBRID GRANT.... 큐브리드에서는 GRANT ... ON ALL TABLES 구문을 아쉽게도 제공 하지 않습니다. 현재는 수동으로 GRANT 구문을 작성하여, 사용하여야 합니다. "이러한 불편함을 자동으로 작성해주면 어떨까" 라는 생각으로 스크립트를 작성하였습니다. HOW to do GRANT ... ON ALL TABLES .....? $ sh cub_grant.sh -------------------------------------------------------------------------------------------------------- CUBRID DBMS, auto-generator for grant all tables usage : sh cub_grant.sh <dbname> <grantee user> <grantor user> <grantor user password> <option> <option> -view : grantee user all grant view -dml : default SELECT, DELETE, UPDATE, INSERT -ddl : default ALTER, INDEX, EXECUTE -all : ALL PRIVILEGES(dml+ddl) <file creation info> default path : . -dml : ./GRANT_DML.sql -ddl : ./GRANT_DDL.sql -all : ./GRANT_ALL.sql -------------------------------------------------------------------------------------------------------- 1. Linux 환경에서만 사용 가능합니다. 2. bash 스크립트로 작성 되었습니다. 3. CUBRID 엔...
    Date2019.06.25 Category제품 여행 By윤준수 Views142
    Read More
  3. CUBRID 슬랏 페이지(slotted page) 구조 살펴보기

    내가 INSERT한 레코드는 어떤 구조로 파일에 저장될까? 운전을 하다 보면 가끔 엔진이나 미션 등이 어떻게 동작하는지 궁금할 때가 있다. 연료가 어떻게 엔진에 전달되는지, 엔진은 어떻게 연료를 연소하여 동력을 얻는지, 또 이를 미션에 전달하여 어떻게 차를 움직이게 하는지 등에 대해 말이다. CUBRID를 사용하는 사용자들도 가끔 이런 호기심이 생기지 않을까? 이런 호기심 많은 사용자를 위한 첫번째로 "사용자가 INSERT한 레코드는 어떤 구조로 파일에 저장될까?"란 주제로 이야기 해보려고 한다. 티타임을 이용해 가벼운 마음으로 읽을 수 있도록 작성하였으니 여유 시간에 재미로 읽을 수 있길 바래본다. 슬랏 페이지(slotted page) 구조 CUBRID도 OS나 다른 DBMS와 같이 성능상의 이유로 페이지(page) 단위 디스크 I/O를 수행한다. CUBRID 페이지 크기는 최소 4KB ~ 최대 16KB 이며, 디폴트로 16KB 디스크 페이지 크기를 사용한다. 슬랏 페이지 구조란 이런 페이지에 데이터 저장을 구조화하는 하나의 방식을 말한다. CUBRID 사용자가 INSERT 구문을 사용하여 데이터(레코드)를 입력하게 되면, 여러 처리를 거친 후 결국 디스크 페이지에 입력된 데이터가 쓰여지게 ...
    Date2019.06.18 Category제품 여행 By민준 Views181
    Read More
  4. Node.js 사용자들을 위한 CUBIRD 연동 방법 [4탄(최종)-CUBRID와 Node.js 커넥션 풀(Connection Pool)설정]

    1. 환경소개 OS CentOS7 64비트 Node.js 10.15.3 버전 Npm 6.4.1 버전 java 1.8.0_201 버전 Editer Eclipse DB CUBRID 10.1 (10.1.2.7694-64632b2)(64비트) 2. 커넥션 풀 (Connection Pool) 이란? 2-1) 개념 ● 데이터베이스와 연결된 커넥션을 미리 만들어서 풀(pool) 속에 저장해 두고 있다가 필요할 때 커넥션을 풀에서 쓰고 다시 풀에 반환하는 기법을 말합니다. ● 커넥션 풀을 사용하면 커넥션을 생성하고 닫는 시간이 소모되지 않기 때문에 애플리케이션의 실행 속도가 빨라지며, 또한 한 번에 생성될 수 있는 커넥션 수를 제어하기 때문에 동시 접속자 수가 몰려도 웹 애플리케이션이 쉽게 다운되지 않습니다. ● 웹 컨테이너가 실행되면 커넥션(Connection) 객체를 미리 풀(pool)에 생성해 둡니다. ● DB와 연결된 커넥션(Connection)을 미리 생성하고, 풀(pool) 속에 저장했다가 필요할 때에 가져다 쓰고 반환합니다. ● 미리 커넥션(Connection)을 생성했기 때문에 데이터베이스에 부하를 줄이고 유동적으로 연결을 관리할 수 있습니다. 3. 커넥션 풀 (Connection Pool) 환경 설정 ● node-cubrid는 자체적인 커넥션 풀(Connection Pool) 기능을 제공하고 있지는 않습니다...
    Date2019.06.13 Category제품 여행 By원종민 Views189
    Read More
  5. Node.js 사용자들을 위한 CUBIRD 연동 방법 [3탄-Callback과 Promise 패턴 개념 소개]

    개요. ●Callback과 Promise 패턴을 이야기 앞서 동기식과 비동기식 프로그래밍을 소개하겠습니다. 1. 동기식 프로그래밍 vs 비동기식 프로그래밍 1-1) 동기식 프로그래밍 ● 어떤 작업을 요청한 후 그 작업이 완료되기까지 기다렸다가 응답을 받아 처리하는 것을 말합니다. <예제 코드> <예제 결과> 동기식 프로그래밍 function addition(x){ return x+x; } var num = addition(2); console.log(num); //4 * 순차적으로 해당 덧셈작업이 완료되기 까지 기다렸다가 결과 값을 보여주게 됩니다. 1-2) 비동기식 프로그래밍 ● 어떤 작업을 요청한 후 다른 작업을 수행하다가 이벤트가 발생하면 그에 대한 응답을 받아 처리하는 것을 말합니다. <예제 코드> <예제 결과> 비동기식 프로그래밍 function addition(x, callback){ setTimeout(callback, 100, x+x); } var num = 0; addition(2,function(x){ num = x; }); console.log(num); //0 * setTimeout은 비동기를 표현하기 위해 사용하였습니다. * 0.1초 후 callback 함수가 실행되는 코드입니다. 해당 코드를 동기식으로 바라보면, console.log에는 4라는 결과 값이 출력되어야 하지만, 결과는 0이 됩니다. 그 이유로 console.log...
    Date2019.06.11 Category제품 여행 By원종민 Views47
    Read More
  6. Node.js 사용자들을 위한 CUBIRD 연동 방법 [2탄-CUBRID와 Node.js 연동]

    1. test 디렉토리 & 파일 생성 1-1) 라우터 파일 생성 ● /routes/test.js 1-2) view 디렉토리& 파일 생성 ● views/test 디렉토리 생성 ● views/test/test_view.ejs 파일 생성 1-3) 프로젝트 최종 결과 2. node-cubrid 드라이버 모듈 설치 ● 모듈 공식 사이트 : https://www.npmjs.com/package/node-cubrid 2-1) node-cubrid 모듈 설치 ● npm install node-cubrid --save ● package.json 에서 node-cubrid 모듈 설치 확인 3. node-cubrid 모듈 적용 및 DB 연동 3-1) 컨트롤러(app.js)에서 라우팅(test.js) 설정. - app.js의 25번째 줄과 동일하게 app.use('/test',require('./routes/test')); 추가 app.js var createError = require('http-errors'); var express = require('express'); var path = require('path'); var cookieParser = require('cookie-parser'); // 접속한 클라이언트의 쿠키 정보에 접근하기 위한 모듈 var logger = require('morgan'); // 클라이언트의 HTTP 요청 정보를 로깅하기 위한 모듈 var indexRouter = require('./routes/index'); var usersRouter = require('./ro...
    Date2019.06.04 Category제품 여행 By원종민 Views113
    Read More
  7. Node.js 사용자들을 위한 CUBIRD 연동 방법 [1탄-Node.js 환경 설치 및 개념 소개]

    1. 환경소개 OS Window 10 64비트 Node.js 10.15.3 버전 Npm 6.4.1 버전 java 1.8.0_201 버전 Editer Eclipse DB CUBRID 10.1 (Window 10 64비트) / CUBRID Manager 10.1 (Window 10 64비트) 2. Node.js 소개 Node.js란? 1) 개념 - Node.js는 확장성 있는 네트워크 애플리케이션 개발에 사용되는 소프트웨어 플랫폼입니다. - 자바스크립트를 서버에서도 사용을 할 수가 있도록 설계가 되어 있는 서버개발을 위해서 나온 언어로 v8이라는 자바스크립트 엔진 위에서 동작하는 이벤트 처리 I/O 프레임워크로 웹서버와 같이 확장성 있는 네트워크 프로그램을 제작하기 위하여 고안이 된 것입니다. 2) 사용 이유 - 간단히 Node.js를 소개하면, 이전까지 Server-Clint 웹사이트를 만들 때 웹에서 표시되는 부분은 javascript를 사용하여 만들어야만 했으며, 서버는 ruby, java 등 다른 언어를 써서 만들어야 했는데, 마침내 한가지 언어로 전체 웹페이지를 만들 수 있게 된 것입니다. express란? 1) 개념 - 노드(NodeJS) 상에서 동작하는 웹 개발 프레임워크로 간편하게 사용하기 위해 사용합니다. * 프레임워크(Framework)란 : 소프트웨어의 구체적인 부분에 해당하는 설계와 구현을...
    Date2019.06.03 Category제품 여행 By원종민 Views186
    Read More
  8. No Image

    분산 시스템으로서의 DBMS, 그리고 큐브리드

    가끔 퇴근길에 서점에 들르곤 한다. 직업이 직업이라 그런진 몰라도 항상 IT코너에 머물러 어떤 새로운 책들이 출간되었나 보게 된다. 그러다보면 최근 유행하는 컨셉이나 아키텍쳐, 프로그래밍 언어나 개발방법론 등에 대해 트렌드가 뭔지 관찰하려고 안해도 자연히 접하게 되는 것 같다. 그 중 최근 유행처럼 사람들 입에 오르내리기도 하고 책으로 소개되기도 하는 개념들 중 MSA(Micro Service Architecture)라는 것이 있다. 뭔가 하고 들여다보니 MSA 개념에서 다루고 있는 '독립적으로 수행되는 최소단위의 서비스' 그리고 그 서비스들의 집합으로서의 시스템과 시스템의 분할에 관한 관점 및 해석은 십수년전 주목받던 SOA(Service Oriented Architecture)가 지향하는 서비스를 구성하는 기능별 시스템의 분할과 크게 다르지 않다. 이 글은 MSA와 SOA가 얼마나 비슷한 사상으로 소개된 개념인지를 이야기하고자 함이 아니다. 예전에도 의미있게 다뤄졌고 지금도 의미있게 받아들여지는 이러한 개념들이 시스템의 관점에서 더 좁게는 DBMS라는 시스템 소프트웨어적 관점에서 어떻게 해석될 수 있는가를 간단하게 짚어보고자 함이다. MSA의 개념이 제대로 구현되기 위해서...
    Date2019.03.29 Category나머지... By조성룡 Views309
    Read More
  9. [CUBRID 유틸리티] restoreslave에 대하여 알아보자.

    CUBRID는 10.1 version 이상부터 restoreslave란 명령어를 제공한다. CUBRID 9.3.x version 까지는 온라인 재구성을 위해 자체적으로 제공되는 shell script를 사용하였으나, 10.1 version 이상부터는 restoreslave 명령을 통해 보다 편하게 작업을 할 수있다. 해당 명령어를 통해 master의 구동 상태와는 상관 없이, slave를 재구축 할 수 있으며, 시나리오는 아래와 같다. 1. HA 서비스 중, 이중화가 깨졌을때. (1) 필요 환경 : master - slave의 이중화 환경. (2) 필요 파일 : master 서버의 backup file (3) 시나리오 - DB의 이중화가 깨지는 것을 재연하기 위해 slave의 db_ha_apply_info의 데이터를 삭제한다. - slave의 heartbeat를 종료한다. slave) $> csql -S -u dba --sysadm demodb sysadm> delete from db_ha_apply_info; - 위의 이중화 로그를 삭제하였을 경우, 동기화는 더이상 이루어지지 않는다. - 위의 행위로 인하여 DB 이중화가 깨졌다고 판단하고 이중화복구를 진행하여보자. - master에서 backup 받은 backup file은 slave에 옮겨놓은 상태이다. slave) $> cubrid service stop -- cubrid sevice 종료 $> ps -ef | grep cubrid -- CUBRID process가 모두...
    Date2019.03.29 Category제품 여행 By박동윤 Views157
    Read More
  10. CUBRID 커버링 인덱스(covering index) 이야기

    CUBRID 2008 R4.0 버전 이상부터는 커버링 인덱스를 지원합니다, 커버링 인덱스는 “A covering index is a special case where the index itself contains the required data field(s) and can return the data.”라고 하는데 원문을 해석하면 커버링 인덱스는 인덱스 자체에 필수 데이터 필드가 들어 있고 데이터를 반환할 수 있는 특별한 인덱스라고 해석됩니다, 다시 정리하면 하나의 질의 내에 특정 인덱스를 구성하는 컬럼만 사용하는 경우 커버링 인덱스를 사용하게 됩니다. 아래 예제-1)에서 SELECT 질의의 WHERE 조건에 사용된 컬럼 i와, SELECT 리스트로 주어진 컬럼 j는 모두 인덱스 idx를 구성하는 컬럼입니다. 이와 같은 경우에 CUBRID는 SELECT 질의를 수행할 때 커버링 인덱스를 스캔 하게 됩니다, 이는 하나의 인덱스가 SELECT 문이 요구하는 조건과 결과를 모두 포함하고 있기 때문에 가능한 일입니다. 예제-1) CREATE TABLE tbl (i INT, j INT); CREATE INDEX idx ON tbl(i, j); SELECT j FROM tbl WHERE i > 0; 그렇다면 왜 커버링 인덱스라는 개념이 필요할까?, 우선 설명에 앞서 우선 CUBRID의 인덱스 구조에 대해 간단하게 설명하겠습니다. CU...
    Date2019.02.28 Category제품 여행 By정만영 Views380
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 Next
/ 11

Contact Cubrid

대표전화 070-4077-2110 / 기술문의 070-4077-2147 / 영업문의 070-4077-2112 / Email. contact_at_cubrid.com
Contact Sales