Background Image
조회 수 396 추천 수 2 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부

이전글: CUBRID Internal: 큐브리드의 저장공간관리 (DIsk Manager, File Manager)

 

볼륨은 어떻게 관리될까?

- 볼륨 헤더(Volume Header)와 섹터 테이블(Sector Table) -


 앞선 글에서 디스크 매니저(Disk Manager)가 섹터의 예약(reservation)을 관리한다고 이야기하였다. 이번 글에서는 볼륨 내의 섹터들이 어떻게 관리되는지에 대한 구체적인 이야기와 이를 위해 볼륨이 어떻게 구성되어 있는지를 다룬다. 여기서 다루어지는 볼륨의 구조는 그대로 non-volatile memory (SSD, HDD 등)에 쓰여진다.

 

볼륨 구조


 디스크 매니저의 가장 큰 역할은 파일생성과 확장을 위해 섹터들을 제공해주는 것이다. 이를 위해 각 볼륨은 파일들에 할당해줄 섹터들과 이를 관리하기 위한 메타(meta)데이터로 이루어져 있다. 메타데이터들이 저장된 페이지를 볼륨의 시스템 페이지(System Page)라고 하며, 볼륨에 대한 정보와 각 섹터들의 예약 여부를 담고 있다. 시스템 페이지는 다음과 같이 두가지로  분류할 수 있다.

  • 볼륨 헤더 페이지 (Volume Header Page, 이하 헤더 페이지): 페이지 크기, 볼륨 내 섹터의 전체/최대 섹터, 볼륨 이름 등, 볼륨에 대한 정보를 지니고 있는 페이지

  • 섹터 테이블 페이지 (Sector Table Page, 이하 STAB 페이지): 볼륨 내의 각 섹터의 예약여부를 비트맵으로 들고 있는 페이지

이러한 시스템페이지들은 볼륨이 생성될 때 미리 볼륨 내의 정해진 공간에 쓰이고, 이 페이지들이 포함된 섹터를 제외한 나머지 섹터들이 파일 매니저로부터의 섹터 예약요청을 처리하기 위해 사용된다. 볼륨 헤더는 볼륨의 첫 번째 페이지에 할당되고, STAB 페이지는 헤더 페이지의 바로 다음 페이지부터 볼륨의 크기를 모두 커버할 수 있는 만큼의 양이 연속적으로 할당된다(disk_stab_init()). 이를 도식화하면 다음과 같다.

volume_format.png

첫 섹터가 시스템 페이지들을 위해 할당된 모습을 볼 수 있다. 시스템 페이지들의 수가 한 섹터를 못 채울 경우 그림처럼 시스템페이지들을 위해 할당된 섹터 내의 페이지들이 일부 사용되지 않을 수 있고, 볼륨에 크기가 커지면 이에 따라 시스템페이지들을 위한 섹터가 둘 이상 할당될 수도 있다.

 

볼륨 헤더 (Volume Header)


볼륨 헤더(DISK_VOLUME_HEADER)는 볼륨의 첫 번째 페이지에 쓰이며, 기본적으로 볼륨에 대한 정보들이 고정 크기로 들어가고 나머지 공간에는 가변길이 변수들이 들어간다. 볼륨 헤더가 담고 있는 정보는 크게 5가지 정도로 분류할 수 있다.

- 볼륨 정보: 볼륨 자체에 대한 정보로 볼륨 전체에 공통으로 적용되는 정보이다. 볼륨의 타입, 캐릭터 셋(set), 생성 시간, 섹터당 페이지 수, 페이지의 크기 등이 저장된다.

- 섹터 정보: 볼륨의 현재 섹터의 정보이다. 볼륨 내에 몇 개의 섹터가 있는지, 얼마나 확장될 수 있는지 등이 저장된다.

- 시스템페이지 정보: 앞서 이야기한 시스템페이지에 대한 정보들이 저장된다.

- 체크포인트 정보: 마지막으로 체크포인트가 성공 시 체크포인트의 시작 지점의 로그 레코드 LSA 정보가 저장된다. 이는 리커버리과정에서 사용된다.

- 가변길이 변수: 볼륨 헤더 페이지 내에서 볼륨 헤더의 모든 고정변수를 제외한 나머지 공간은 가변길이 변수들을 위한 공간이다. 볼륨의 full path나 사용자 정의 comment 등이 저장된다.

- 기타: reserved 등 동작과 무관한 특수목적 변수들이 저장된다.

구체적으로 볼륨 헤더 구조체(DISK_VOLUME_HEADER)가 담고 있는 정보(변수)들은 다음과 같다.

 

분류 변수 타입 변수명 설명
볼륨 INT8 db_charset 데이터베이스의 캐릭터 셋
INT16 volid 해당 볼륨의 볼륨 식별자
DB_VOLTYPE type 볼륨의 타입, 볼륨이 어떻게 관리될지를 결정
Permanent: 영구적으로 볼륨유지
Temporary: 서버 종료/재시작시 제거. 임시데이터를 저장하는데 기존 볼륨의 공간이 부족할 경우 생성된다.
DB_VOLPURPOSE purpose 볼륨의 이용목적, 볼륨을 어떻게 사용할지를 결정
Permanent: 영구적인 데이터를 저장할 것.
Temporary: 임시적인 데이터를 저장할 것. 임시데이터를 저장할 때에 임시타입의 볼륨을 만들기전에 임시목적의 영구타입볼륨이 있을 경우 먼저 사용한다.
INT64 db_creation 데이터베이스 생성시간
INT16 next_volid 여러 볼륨이 있을 경우 그들을 연결하는 포인터, 다음 볼륨의 식별자를 담음
DKNPAGES sect_npgs 한 섹터당 페이지 수
INT16 iopagesize 한 페이지의 크기
HFID boot_hfid 볼륨 부팅과 멀티 볼륨관련된 정보를 담고있는 힙(Heap)파일의 식별자
섹터 DKNPAGES nsect_total 볼륨의 현재 총 섹터 수, 볼륨파일의 크기를 결정
DKNPAGES nsect_max 볼륨이 확장될 수 있는 최대 크기의 섹터 수
SECTID hint_allocsect 섹터예약시 섹터테이블의 어디부터 탐색할지 캐싱해둔 값
시스템 페이지 DKNPAGES stab_npages 섹터테이블이 차지하는 페이지 수
PAGEID stab_first_page 섹터테이블의 시작페이지
PAGEID sys_lastpage 마지막 시스템 페이지 (현재 stab_first_page+stab_npages -1)
체크포인트 LOG_LSA chkpt_lsa 체크포인트 시작점의 LSA, 리커버리분석의 시작점 (ARIES의 master record)
가변길이 변수 char [1] var_fields 가변길이 변수들의 시작점, var_fileds + offsetto* 가 각 가변변수의 위치
INT16 offset_to_vol_fullname 볼륨의 절대경로 이름의 offset
INT16 offset_to_next_vol_fullname next_volid 볼륨의 절대경로 이름의 offset
INT16 offset_to_vol_remarks 볼륨에 대한 코멘트의 offset
코멘트는 볼륨포맷(disk_format())시에 적히는 것으로 유저가 addvoldb를 실행하면서 적는 코멘트나 볼륨의 공간이 가득차 자동으로 새로운 볼륨을 만들어질 경우 적히는 코멘트("Automatic Volume Extension") 등이 들어간다.
기타 INT32 reserved0/1/2/3 미래 확장성을 위한 예약변수들
INT8/32 dummy1/2 alignment를 위한 더미변수들
char [] magic 볼륨파일의 매직넘버

* 각 변수에 대한 설명을 달아두었긴 했지만, 명확한 이해를 위해서는 각 변수의 값이 언제 설정되고, 어떻게 사용되는지 등을 알아야 한다. 이에 대한 자세한 내용은 각 변수가 이용되는 부분을 설명할 때 다시 살펴보도록 한다.

 

섹터 테이블 (Sector Table)


 섹터 테이블(STAB)은 볼륨 내 모든 섹터들의 사용 여부(예약 여부)를 저장하고 있는 비트맵이다. 섹터 테이블 페이지의 하나의 비트는 하나의 섹터의 예약 여부를 나타낸다. 섹터 테이블은 볼륨 헤더 페이지의 바로 다음 페이지(볼륨의 두번째 페이지, stab_first_page)부터 시작하여 볼륨의 최대 크기(nsect_max)를 커버할 수 있는 만큼의 페이지(stab_npages)를 사용한다. 섹터예약에 관한 연산을 수행할 때, 각 비트를 하나씩 순회하며 연산을 수행할 수도 있지만 큐브리드는 비트들을 DISK_STAB_UNIT (이하 unit, 유닛)이라는 단위로 묶어 관리, 연산하고 불가피할 경우에만 비트를 순회한다. 비트연산을 할 때에 CPU 아키텍쳐등을 고려하여 효율적인 방법으로 처리 할 수 있도록 이러한 처리단위를 제공한다. 정리하자면 섹터 테이블의 비트맵은 여러페이지로 구성되며 각 페이지는 다시 유닛으로 나뉘고, 유닛의 비트들은 각각의 하나의 섹터의 예약 여부를 나타낸다. 섹터 테이블을 읽거나 조작하는 등의 연산은 모두 이 유닛을 기반으로 이루어진다.

* 현재 유닛은 다음과 같이 UINT64형이다. CPU아키텍처나 디자인에 맞춰 이 값을 변경시키면 STAB의 관리 단위를 변경 시킬 수 있다. 주석 또한 이 값의 변경을 통해 유닛단위를 쉽게 변경할 수 있을 것이라 이야기하고 있다.

만약 sector_id가 32100인 섹터에 대한 예약여부를 확인하려할 때, STAB에서 해당 비트의 위치는 어떻게 구할 수 있을까? 이는 마치 초에서 (시,분,초)를 구하듯 (page_id, offset_to_unit, offset_to_bit) 으로 다음과 같이 계산된다.

page_id: (볼륨헤더의 stab_first_page) + sector_id / (페이지의 비트 수)
offset_to_unit: sector_id % (페이지의 비트 수) / (페이지내 유닛의 수)
offset_to_bit: sector_id % (페이지의 비트 수) % (페이지내 유닛의 수)

만약 1KB 페이지, 64bit unit이라면 sector_id 32100인 (3, 117, 36)이 된다. 안타깝게도 페이지의 크기가 2^n형태가 아니기 때문에 OS의 페이지 테이블이나 CPU 캐시처럼 단순 비트 쉬프트연산으로 유닛과 오프셋등을 구할 수 없다. 때문에 비싼 /, % 연산이 사용된다.

* IO 페이지의 크기는 4KB, 16KB 등 2^n형태이더라도 모든 페이지가 공통적으로 페이지타입, LOG_LSA 등의 공간을 이미 예약해두었기 때문에 실제 사용가능한 크기는 이 영역을 제외한 크기이다.

 

섹터 테이블의 연산

 섹터의 예약정보를 조회하거나 예약하려면 섹터테이블의 비트맵을 조작해야한다. 이러한 연산들은 앞서 말한 유닛 단위를 기반으로 이루어지며, 하나의 섹터 비트나 유닛을 참조할 일 보다는 여러 유닛들을 참조하는 경우가 대부분이기 때문에 커서(Cursor, DISK_STAB_CURSOR)와 이터레이션 인터페이스(disk_stab_iterate_units())를 제공한다. 커서는 볼륨 내 한 섹터의 STAB에서의 위치(page_id, offset_to_unit, offset_to_bit)를 가리킨다. 또, 커서가 가리키는 유닛에 대한 연산을 위해 커서가 가리키고 있는 유닛의 포인터(page, unit)를 들고 있다.

typedef struct disk_stab_cursor DISK_STAB_CURSOR;                 
struct disk_stab_cursor
{
    const DISK_VOLUME_HEADER *volheader;    /* Volume header */

    PAGEID pageid;      /* Current page ID */
    int offset_to_unit;     /* Offset to current unit in page. */
    int offset_to_bit;      /* Offset to current bit in unit. */

    SECTID sectid;      /* Sector ID */     

        // 위의 변수들은 모두 현재 커서가 가리키는 섹터에 대한 정보와 STAB내에서 섹터의 위치
        // 아래의 변수들은 위의 변수들이 가리키는 STAB내의 유닛을 참조하기 위한 포인터

    PAGE_PTR page;      /* Fixed table page. */                   
    DISK_STAB_UNIT *unit;       /* Unit pointer in current page. */
};

이터레이션 함수인 disk_stab_iterate_units() 의 선언부는 다음과 같다. (설명에 필요하지 않은 인자들은 제외하였다.)

static int disk_stab_iterate_units (..., DISK_STAB_CURSOR * start, DISK_STAB_CURSOR * end, DISK_STAB_UNIT_FUNC f_unit, void *f_unit_args)

앞서 이야기한 커서 자료형의 start, end와 이터레이션하면서 유닛에 적용할 함수(DISK_STAB_UNIT_FUNC)와 함수의 인자를 매개변수로 받는 것을 볼 수있다. 이 함수는 [start, end) 범위의 유닛을 순회하면서 각 유닛마다 DISK_STAB_UNIT_FUNC함수를 적용 시킨다. 여타 프로그래밍언어에 있는 map() 함수를 생각하면 이해가 쉽다. start, end 커서는 disk_stab_cursor_setat\()) 류의 함수를 통해 STAB의 시작이나 끝, 특정 sector ID로 설정된다. DISK_STAB_UNIT_FUNC* 는 함수포인터로 다음과 같다.

typedef int (*DISK_STAB_UNIT_FUNC) (..., DISK_STAB_CURSOR * cursor, bool * stop, void *args);

disk_stab_iterate_units()에서 이터레이션되어 만나는 각 유닛에 대한 커서를 인자로 받아 사용자가 정의한 작업을 진행한다. 이 때 stop에 true를 넣고 함수를 종료하면, disk_stab_iterate_units() 의 이터레이션이 종료된다. 예를 들어 30개의 섹터를 예약하려 할 때, 이번 유닛에서 30개의 섹터 예약을 모두 완료했다면 더 이상의 작업을 중지하는 종료 조건으로 활용할 수 있다. 이러한 유닛 이터레이션을 통한 연산에는 섹터들 예약, 섹터들 예약 해제, 가용 섹터들의 갯수 확인 등이 있다. 좀 더 확실한 이해를 위해 가용 섹터들의 갯수확인에 사용되는 DISK_STAB_UNIT_FUNCdisk_stab_count_free() 와 이에 대한 호출부를 살펴보자.

// free sector의 갯수를 구하는 함수 정의
static int disk_stab_count_free (THREAD_ENTRY * thread_p, DISK_STAB_CURSOR * cursor, bool * stop, void *args)
{   
    DKNSECTS *nfreep = (DKNSECTS *) args;

    /* add zero bit count to free sectors total count */
    *nfreep += bit64_count_zeros (*cursor->unit);
    return NO_ERROR;
}

// 함수 호출부
int disk_rv_volhead_extend_redo (THREAD_ENTRY * thread_p, LOG_RCV * rcv)
{
      ...
      disk_stab_cursor_set_at_sectid (volheader, volheader->nsect_total - nsect_extend, &start_cursor); 
      disk_stab_cursor_set_at_end (volheader, &end_cursor);
        error_code = disk_stab_iterate_units (thread_p, volheader, PGBUF_LATCH_READ, &start_cursor, &end_cursor, disk_stab_count_free, &nfree);
      ...
    disk_cache_update_vol_free (volheader->volid, nfree);
      ...
}

호출부의 예는 recovery의 redo phase에 사용되는 함수중 하나인 disk_rv_volhead_extend_redo() 로, 실제로 확장된 볼륨 내의 free setor의 갯수를 디스크 캐시에 업데이트하기 위한 코드이다. 확장하기 전의 위치(volheader->nsect_total - nsect_extend)에 start커서를 두고, stab의 끝에 end커서를를 두고 disk_stab_iterate_units()함수를 호출하여 [start, end)를 순회하며 모든 유닛들에서 0인 비트들의 갯수를 구하는 것을 볼 수 있다.

* 이러한 이터레이션 방식은 파일매니저와 디스크매니저의 여러 곳에서 사용된다. 대표적으로 나중에 살펴볼 파일 매니저의 파일 테이블과 유저 테이블 등에서도 이러한 패턴으로 데이터를 접근, 조작한다.


이어서 다룰 디스크 매니저 내용은 다음과 같다.

- 섹터 예약 및 예약 해제

- 볼륨 확장


  1. Visual Studio Code 소개

    시작하며 Visual Studio Code (이하 VSCode) 는 마이크로소프트에서 오픈소스로 개발하고 있는 코드 에디터입니다. VSCode는 활용하기에 따라 메모장과 비슷한 기능을 하기도, IDE(통합 개발 환경) 로써의 기능을 하기도 합니다. 이미 많은 개발자들이 VSCode를 사용하고 있습니다. 그러나 VSCode의 사용이 낯선 개발자들을 위해 이 글에서는 VSCode의 기본적인 사용 방법을 소개드리려고 합니다. 설치 및 시작 VSCode는 공식 웹 사이트(https://code.visualstudio.com)에서 자신의 운영체제에 맞는 버전을 다운로드 받아 설치할 수 있습니다. 설치하고 난 뒤 VSCode를 실행하면 다음과 같은 화면을 마주할 수 있습니다. 이제, 수정하고 싶은 파일을 VSCode 내부로 끌어다 놓거나, Open File, Open Folder 를 통해 파일 및 폴더를 열어 로컬에 있는 코드를 개발할 수 있습니다. 하지만 VSCode의 성능을 온전히 이용하려면 확장(Extension)을 설치하여 응용하는 것을 추천합니다. 확장 (Extensions) 확장은 다음 버튼을 누르거나 Ctrl+Shift+X 를 입력하여 확장 탭에 진입할 수 있습니다. 초기에는 확장이 설치되지 않은 상태인데, Search Extensions in Marketplace 라고 적혀...
    Date2023.12.21 Category나머지... By송일한 Views208 Votes2
    Read More
  2. CUBRID QA 절차 및 업무 방식 소개

    큐브리드의 QA 절차 및 업무 방식에 대해 소개하겠습니다. CUBRID QA팀이 하는 일? QA(Quality Assurance)팀은 CUBRID의 품질 보증에 대한 전반적인 절차를 다루는 업무를 맡고 있습니다. 단순 테스트뿐만 아니라, 개발 프로세스에 직간접적인 관여와 QA Tool 확장 및 유지보수, 제품 결함 관리, 제품 릴리즈 등 제품이 출시되는 과정에서 여러가지 일을 하고 있습니다. 특히, 개발과정의 처음부터 끝까지 참여하여 품질 저하에 문제가 될 만한 부분이 있는지 검증하고, 개선안을 제안하는 등 개발 프로세스 전반적으로 개입하여 제품 품질을 높이는 일을 하고 있습니다. CUBRID QA 절차 CUBRID QA 절차는 크게 다음과 같이 볼 수 있습니다. 각 절차에 대한 상세한 과정은 다음과 같습니다. 1. Kick off 참여 -먼저, 개발팀으로부터 프로젝트를 할당 받으면, 킥오프를 참여합니다. 요구사항 및 목표를 파악하고, 사용자 관점에 부합하지 않을 경우 개선을 요청합니다. 프로젝트에 따라 검증방법이나 절차가 달라질 수도 있고 때에 따라 새로운 환경이 필요할 수 있기 때문에 여러 가지 의견들을 종합하여 팀 내 담당자를 선정합니다. 2. 테스트 환경 구축 -프로젝트를 위해 어...
    Date2023.11.17 Category나머지... By윤시온 Views356 Votes1
    Read More
  3. JPA와 CUBRID 연동 가이드

    JPA? JPA는 자바의 ORM 기술 표준으로 인터페이스의 모음입니다. 표준 명세를 구현한 구현체들(Hibernate, EclipseLink, DataNucleus)이 있고, JPA 표준에 맞춰 만들면 사용자는 언제든 원하는 구현체를 변경하며 ORM 기술을 사용할 수 있습니다. 이번 CUBRID 연동 가이드에서는 대표적으로 많이 사용하는 Hibernate를 사용하여 작성했습니다. 버전 정보 SpringBoot: 2.7.8 Hibernate: 5.6.14.Final Java: 11 CUBRID: 11.0.10, 11.2.2 JPA와 CUBRID 연동 1) 라이브러리 설정 Maven 프로젝트에 JPA(Hibernate), CUBRID JDBC 라이브러리를 넣기 위해 pom.xml에 설정을 합니다. CUBRID JDBC를 받기 위해 repository도 같이 추가해야 합니다. 2) JPA 설정 필요한 라이브러리를 다 받은 뒤 JPA 설정 파일인 persistence.xml에 설정을 해줘야 합니다. 해당 파일은 표준 위치가 정해져 있기 때문에 /resources/META-INF/ 밑에 위치해야 합니다. DBMS 연결 시 필요한 정보와 JPA 옵션들을 설정해 줍니다. 기본적으로 driver, url, user, password를 설정하고, 방언(dialect)도 필수적으로 설정해야 합니다. DBMS가 제공하는 SQL 문법과 함수들이 조금씩 다르기 때문에 JPA가 어떤 DBMS...
    Date2023.02.22 Category나머지... By김동민 Views1134 Votes3
    Read More
  4. dblink를 이용한 remote-server materialized view 기능

    Materialized View Materialized View(이하 MView) 이것은 말 그대로 View의 일종으로 일반 View는 논리적인 스키마인데 반해, MView는 물리적 스키마입니다. 논리적 스키마는 실제 데이터가 데이터베이스에 저장되어 있지 않고 데이터를 가져오기 위한 SQL질의만 저장되어 있다라는 것이고, 물리적 스키마 혹은 테이블이라는 것은 셀제 데이터가 데이터베이스에 저장되어 있다라는 것입니다. MView는 필요한 결과를 가져오는 질의가 빈번하게 자주 사용 될 경우, 질의 실행 시간 속도 향상을 위해 데이터베이스 테이블을 만들어 저장해 두는 것으로 실행 비용이 많이 드는 조인이나, Aggregate Function을 미리 처리하여 필요할 때 테이블을 조회 하도록 하는 것 입니다. 예를 들면 대용량의 데이터를 COUNT, SUM, MIN, MAX, AVG 처럼 자주 사용되는 Aggregate Function 실행 속도를 향상을 위해서, 질의 실행 결과을 데이터베이스 테이블로 생성해 두는 벙법입니다. 즉, 자주사용되는 View의 결과를 데이터베이스에 저장해서 질의 실행 속도를 향상시키는 개념입니다. 이번 글에서는 일반적인 MView와 더불어 현재 작업 중인 데이터베이스 로컬 서버가 아닌 원격지(remote) ...
    Date2023.02.20 Category나머지... Bybwkim Views713 Votes2
    Read More
  5. DBeaver 환경을 새로운PC에 간편하게 복원하기

    현재 Java로 구현된 데이터베이스 관리 툴 중에 가장 인기가 있는 툴이 DBeaver가 아닌가 생각된다. DBeaver 툴은 CUBRID 또한 지원을 해서 SQL Query browser의 기능을 충분히 수행한다. ※ DBeaver 특징 □ Community Edition 버전을 사용하면 라이센스(Apache License)가 무료이다. □ 자바/이클립스 기반으로 개발되어서 윈도우, 리눅스, MAC에서 구동된다. □ JDBC 기반으로 해서 DB를 지원한다. (CUBRID, ORACLE, SQL Server, MySQL, Postgresql ... ) □ 개발소스가 공개되어서 버그픽스가 가능하고 새로운 기능을 개발하여 사용이 가능하다. □ 릴리즈도 거의 2주마다 되기 때문에 버그 픽스또한 매우 빠른 편이다. CURBID를 DBeaver에서 사용하는 방법은 "DBeaver Database Tool 큐브리드 사용하기" 를 참조 하면 도움이 될 것이다. 필자는 해당 툴을 사용하다가 사용하는 PC를 바꾸게 되어 기존 설정을 백업해서 복구 하고자 한다. Workspace를 따로 빼서 사용하지 않은 기본 설정으로 사용하신 분을 기준으로 백업/복구를 가이드 하고자 한다. 순서는 다음과 같다. 1. 먼저 백업하고자 하는 기존의 환경에서 탐색기 창을 연다. 2. 주소/디렉터리 위치 표기창에 %appdata%...
    Date2022.12.26 Category나머지... ByHiCLASS Views4896 Votes0
    Read More
  6. No Image

    SSH 공개키 인증을 사용하여 암호 없이 편리하게 원격 호스트에 접속하기-!

    SSH 키는 공개 키 암호화 방식 및 인증 확인 응답 인증을 사용하는 SSH 서버에 대해 자체 식별하는 방식입니다. 비공개 서버에 접속하기 위해서는 인증절차를 거쳐야 하는데요, 기존에 비밀번호를 네트워크를 통해 보내는 비밀번호 인증은 네트워크 상에서 ID/비밀번호가 그대로 노출되는 문제가 있고, 접속할 때마다 입력해야 하는 번거로움이 있습니다. SSH 키는 이와 달리 공개키 암호 방식을 사용하여 서버에서 인증받을 수 있으며, 암호를 생략하고 원격 호스트로 접속할 수 있습니다. 과정은 아래와 같습니다. 1. 로컬 호스트에 키 생성(private key, public key) 2. 원격 호스트에 public key 복사(public key 만으로는 복호화할 수 없기 때문에 여러 서버에 복사해도 무관) 3. 로컬 호스트에서 원격 호스트로 ssh 접속 4. 원격 호스트에서 public key로 암호화 된 정보를 로컬 호스트에게 주고, 로컬 호스트는 private key와 원격 호스트의 public key를 이용하여 복호화 수행 5. 인증 완료 시 암호 입력 필요 없이 접속 가능 실제 명령어 수행 과정을 살펴보도록 하겠습니다. 1. 로컬 호스트에 키 생성 ssh-keygen 명령어를 이용해 private/public 키를 생성합니다. s...
    Date2020.01.03 Category나머지... By허서진 Views17391 Votes0
    Read More
  7. No Image

    큐브리드에서의 신입사원

    2019년 9월 1일 첫 직장으로 큐브리드에 입사하였다. 날이 그리 차갑지도 덥지도 않은 그저 그런 가을 날에, 걱정 반 기대 반을 가슴에 품고서 새로운 사무실에 들어가 새로운 사람들과 만나게 되었다. 새로운 만남, 새로운 생활을 한다는 기대감과, 무슨 일을 하게 될까, 과연 잘 할 수 있을까 하는 걱정이 공존되는 날이었다. 데이터베이스 보다는 운영체제, 커널, 시스템만 했던 사람이 잘 적응할 수 있을 까, 늦깎이 신입사원이 잘할 수 있을까 등 걱정이 많았지만, 하지만 이번 글에서는 새해가 오는 만큼 걱정 보다는 좋았던 점에 대해서만 다루겠다. 큐브리드에서의 생활은 기대했던 것과는 달리 늘 좋았다. 물론, 큐브리드 블로그에서 쓰는 글이라 믿지 못할 지도 모르겠지만 늘 좋았다. 내가 경험했던 직장생활은 '미생'이 유일했기에 하는 말일 수도 있겠지만, 생각했던 것과는 다른 생활이었다. 신입사원이 느꼈던 좋은 점에 대해 몇 가지 나열하자면, 우선, 대화가 자유롭다. 직급에 상관없이 서로 질문하고, 대답해주고, 대화하는 것에 아무런 거리낌이 없다. 오프라인으로 서로 질의응답을 하는 것은 물론, 온라인으로 서로 소통하는 것에 있어 자유롭다...
    Date2019.12.31 Category나머지... By김주호 Views592 Votes0
    Read More
  8. Doxygen으로 소스코드 문서화 해보기

    오픈소스 프로젝트를 이용해서 개발을 해보신 분들은 소스코드를 문서화한 레퍼런스 문서(또는 개발자 매뉴얼)을 참고해서 개발해 본 경험이 있을 것 같습니다. 개발자를 위한 이러한 문서는 기본적으로 프로젝트 빌드 방법, 주요 아키텍쳐 설명 등의 내용들을 담기도 하고 소스코드에서 정의한 변수나 구조체와 함수 같은 것들이 소스 파일을 직접 열어서 찾아보지 않아도 보기 좋게 정리하거나 변수나 함수 간의 관계를 정리해서 보여주기도 합니다. 다음과 같은 프로젝트의 문서를 예시로 참고해 볼 수 있겠네요. CGAL : https://doc.cgal.org/4.2/CGAL.CGAL/html/index.html Eigen : http://eigen.tuxfamily.org/dox/ Xerces-C++ : http://xerces.apache.org/xerces-c/apiDocs-3/classes.html 공개 되어있는 코드를 한줄한줄 따라가보며 파악할 수도 있지만 프로젝트의 규모가 커지고, 코드의 복잡도가 증가할수록 개발자를 위한 문서는 중요해집니다. 왜냐하면 문서를 읽으면 소스코드를 훨씬 빠르게 파악할 수 있기 때문입니다. 이러한 문서 덕분에 다른 개발자가 조금 더 쉽게 내 프로젝트에 기여할 수 있게 된다면 내 프로젝트에 참여하고 기여해주는 사람들이 더 많아...
    Date2019.09.30 Category나머지... Byhgryoo Views11998 Votes0
    Read More
  9. No Image

    분산 시스템으로서의 DBMS, 그리고 큐브리드

    가끔 퇴근길에 서점에 들르곤 한다. 직업이 직업이라 그런진 몰라도 항상 IT코너에 머물러 어떤 새로운 책들이 출간되었나 보게 된다. 그러다보면 최근 유행하는 컨셉이나 아키텍쳐, 프로그래밍 언어나 개발방법론 등에 대해 트렌드가 뭔지 관찰하려고 안해도 자연히 접하게 되는 것 같다. 그 중 최근 유행처럼 사람들 입에 오르내리기도 하고 책으로 소개되기도 하는 개념들 중 MSA(Micro Service Architecture)라는 것이 있다. 뭔가 하고 들여다보니 MSA 개념에서 다루고 있는 '독립적으로 수행되는 최소단위의 서비스' 그리고 그 서비스들의 집합으로서의 시스템과 시스템의 분할에 관한 관점 및 해석은 십수년전 주목받던 SOA(Service Oriented Architecture)가 지향하는 서비스를 구성하는 기능별 시스템의 분할과 크게 다르지 않다. 이 글은 MSA와 SOA가 얼마나 비슷한 사상으로 소개된 개념인지를 이야기하고자 함이 아니다. 예전에도 의미있게 다뤄졌고 지금도 의미있게 받아들여지는 이러한 개념들이 시스템의 관점에서 더 좁게는 DBMS라는 시스템 소프트웨어적 관점에서 어떻게 해석될 수 있는가를 간단하게 짚어보고자 함이다. MSA의 개념이 제대로 구현되기 위해서...
    Date2019.03.29 Category나머지... By조성룡 Views1358 Votes0
    Read More
  10. No Image

    실패하지 않는 마이그레이션을 위해서 고려해야 될 사항

    실패하지 않는 마이그레이션을 위해서 고려해야 될 사항 클라우드 전환에 따라 기존 유지보수 비용이 높은 UNIX 체계에서 Linux 체계로 전환하면서 오픈소스 유형의 SW로 전환하는 사례가 많아졌다. 도입단가, 비용문제로 고객과 SW밴더간의 이견을 좁히지 못해서 대체 SW로 전환하는 사례도 있다. 그 이외에도 노후장비 교체시기에 SW까지 함께 교체하는 경우도 있는데 OS 및 WAS, 그리고 Database System과 같은 기업 서비스의 근간이 되는 Package SW들이 주 대상이 된다. 위 3가지 중에 대체 SW로 변환하는데 있어 어려움이 발생하는 영역으로 WAS 및 Database System 부분이 될 수 있는데 그 중에서도 Database System이 난위도가 높으며 성공여부를 가늠하는 핵심적인 부분이기도 하다. 다른 대체 SW로 전환하는 작업을 Win-Back 마이그레이션이라는 용어를 사용하기도 하는데 성공적으로 수행하기 위해서 꼼꼼하게 대비해야하는 사항들이 있다. 다수의 DBMS 전환작업을 해오면서 성공과 실패를 통해 경험한 내용을 기반으로 Win-Back 마이그레이션 프로젝트를 수행하는데 고려되어야 할 사항들에 대해서 공유하고자 한다. 1. 제품선정(RDB) DBA또는 그에 준하는 역할을...
    Date2018.12.31 Category나머지... By김창휘 Views7305 Votes0
    Read More
Board Pagination Prev 1 2 3 Next
/ 3

Contact Cubrid

대표전화 070-4077-2110 / 기술문의 070-4077-2113 / 영업문의 070-4077-2112 / Email. contact_at_cubrid.com
Contact Sales