Background Image
조회 수 282 추천 수 4 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부

목차

1. 개요

2. B+ 트리의 노드(= 페이지)

2.1. 오버플로 노드 (BTREE_OVERFLOW_NODE)

2.2. PAGE_OVERFLOW 페이지

3. 노드 분할

3.1. 노드 분할이 발생하는 경우

3.1.1. 새로운 키가 입력되는 경우

3.1.2. 기존 키의 크기가 증가하는 경우

3.1.3. 기존 레코드에 테이블 레코드의 OID가 추가되는 경우

3.1.4. 기존 레코드에 MVCC 아이디가 추가되는 경우

3.2. 사용자가 키를 입력하는 패턴에 따라 달라지는 노드 분할 #1

3.2.1. 시나리오 #1 - 1부터 27까지 오름차순으로 증가하는 패턴으로 키를 입력하는 경우

3.2.2. 시나리오 #2 - 1부터 27까지 불규칙 패턴으로 키를 입력하는 경우

3.2.3. 비교 결과

4. 똑똑하게 노드 분할하기

4.1. 사용자가 키를 입력하는 패턴에 따라 달라지는 노드 분할 #2

4.1.1. 오름차순으로 증가하는 패턴으로 키를 입력하는 경우

4.1.2. 내림차순으로 감소하는 패턴으로 키를 입력하는 경우

4.1.3. 불규칙 패턴으로 키를 입력하는 경우

5. 루트 노드 → 브랜치 노드 → 리프 노드 순서의 노드 분할

6. 참고

 

 

개요

큐브리드는 B+ 트리 인덱스를 사용하고 있습니다. B+ 트리 인덱스는 새로운 키가 입력되거나 기존 레코드가 변경될 때, B+ 트리를 유지하기 위해서 노드의 분할 또는 병합이 발생할 수 있습니다. 노드는 B+ 트리를 구성하는 가장 작은 단위로, 하나의 노드는 데이터베이스에서 하나의 페이지에 해당합니다. 이 글에서는 노드가 되는 페이지에 대해서 살펴보고, 노드 분할이 발생하는 경우와 그 과정에 대해서 알아보겠습니다.

 

예시의 모든 질의는 11.3.0.1089-bd31bd5 버전에서 실행했습니다.

 

 

B+ 트리의 노드(= 페이지)

데이터베이스의 모든 데이터는 페이지에 저장되며, 모든 페이지는 슬롯 페이지 구조(Slotted Page Structure)로 되어 있습니다. 슬롯 페이지 구조에 대해 더 알고 싶다면 "CUBRID 슬랏 페이지(slotted page) 구조 살펴보기" 글을 참고해주세요. 모든 페이지는 페이지 헤더(SPAGE_HEADER)를 포함하고 있습니다. 페이지는 페이지 헤더의 페이지 타입(PAGE_TYPE)을 통해 어떤 테이터를 저장하고 있는지를 구분할 수 있습니다. 페이지 타입에 따라 추가로 필요한 헤더를 가질 수 있습니다. B+ 트리의 노드는 페이지 타입이 PAGE_BTREE인 페이지입니다. PAGE_BTREE 페이지는 페이지 헤더와 페이지 타입에 필요한 노드 헤더(BTREE_NODE_HEADER) 또는 오버플로 헤더(BTREE_OVERFLOW_HEADER)를 가지고 있습니다.

 

일반적으로 B+ 트리는 노드를 3 계층으로 구분합니다. 가장 상위 노드를 루트(Root) 노드, 가장 하위 노드를 리프(Leaf) 노드, 루트와 리프 사이에 있는 노드를 브랜치(Branch) 노드라고 합니다. 노드가 어느 계층의 노드인지는 노드 헤더가 가지고 있는 노드 레벨 (node_level)로 확인할 수 있습니다. 리프 노드의 노드 레벨은 항상 1이며, 루트 노드의 노드 레벨은 B+ 트리의 높이입니다. B+ 트리의 높이가 3인 경우, 브랜치 노드의 노드 레벨은 2가 되고, 루트 노드의 노드 레벨은 3이 됩니다.

 

노드 레벨에 따라서 노드 타입을 구분하고 있습니다. 노드 타입은 리프가 아닌 노드(BTREE_NON_LEAF_NODE), 리프 노드(BTREE_LEAF_NODE), 오버플로 노드(BTREE_OVERFLOW_NODE) 등 3가지가 있습니다. 노드 레벨이 1인 경우 노드의 노드 타입은 BTREE_LEAF_NODE(리프 노드)가 되며, 노드 레벨이 1보다 큰 경우 BTREE_NON_LEAF_NODE(리프가 아닌 노드)가 됩니다. B+ 트리의 높이가 1인 경우에는 인덱스를 구성하는 페이지가 1개이고, 루트 노드의 노드 레벨이 1이기 때문에 루트 노드의 노드 타입이 BTREE_LEAF_NODE(리프 노드)가 됩니다. 오버플로 노드에 대해서는 좀 더 아래에서 알아보겠습니다.

 

1
2
3
4
5
6
7
8
/* src/storage/btree.h */
 
typedef enum
{
  BTREE_LEAF_NODE = 0,
  BTREE_NON_LEAF_NODE,
  BTREE_OVERFLOW_NODE
} BTREE_NODE_TYPE;

 

루트 노드는 루트 헤더(BTREE_ROOT_HEADER)를 가지고 있습니다. 루트 헤더는 노드 헤더를 포함하고 있고, 인덱스 전체에 대한 메타 정보를 저장하고 있습니다. 브랜치 노드와 리프 노드는 노드 헤더만 가지고 있습니다.

 

BTREE_ROOT_HEADER.png

BTREE_NODE_HEADER.png

 

페이지의 0번 슬롯이 루트 헤더 또는 노드 헤더를 가리키고 있습니다. 루트 노드와 브랜치 노드의 레코드는 다음 계층 노드의 VPID를 저장하고 있고, VPID는 페이지에 접근할 수 있는 주소입니다.  VPID는 볼륨 아이디, 페이지 아이디로 구성되어 있습니다. 리프 노드의 레코드는 테이블 레코드들의 OID를 저장하고 있고, OID는 레코드에 접근할 수 있는 주소입니다. OID는 볼륨 아이디, 페이지 아이디, 슬롯 아이디로 구성되어 있습니다.

 

PAGE_BTREE.png

 

오버플로 노드 (BTREE_OVERFLOW_NODE)

리프 노드에 동일한 키가 여러 번 입력되면 해당 키는 한 번만 저장하고 테이블 레코드들의 OID를 모아서 저장합니다. 이러한 구조는 같은 키를 가지는 테이블 레코드들을 빠르게 찾을 수 있도록 하는 장점이 있습니다. 그러나 OID 목록에서 특정 OID를 찾는 것은 어려울 수 있습니다. OID 목록의 크기는 페이지 크기의 1/8을 초과할 수 없으며, 페이지 크기의 1/8을 초과하는 OID들은 오버플로 노드에 저장됩니다.

 

1
2
3
/* src/storage/btree_load.h */
 
#define BTREE_MAX_OIDLEN_INPAGE ((int) (DB_PAGESIZE / 8))

 

오버플로 노드에는 2개의 슬롯만 존재합니다. 0번 슬롯은 오버플로 헤더를 가리키고 있으며, 1번 슬롯은 OID 목록을 가리키고 있습니다. 하나의 오버플로 노드에 OID 목록을 모두 저장할 수 없는 경우에는 오버플로 헤더가 다음 오버플로 노드의 VPID를 저장하고 있습니다.

 

BTREE_OVERFLOW_NODE.png

BTREE_OVERFLOW_HEADER.png

 

리프 노드의 레코드가 오버플로 노드에 OID 목록을 저장하고 있는 경우에는 첫 번째 OID의 슬롯 아이디에 BTREE_LEAF_RECORD_OVERFLOW_OIDS 플래그를 설정하며, 레코드 마지막에는 첫 번째 오버플로 노드의 VPID가 저장되어 있습니다.

 

1
2
3
4
5
6
7
8
9
10
/* src/storage/btree.c */
 
if (btree_leaf_is_flaged (rec, BTREE_LEAF_RECORD_OVERFLOW_OIDS))
  {
    btree_leaf_get_vpid_for_overflow_oids (rec, &leaf_rec->ovfl);
  }
else
  {
    VPID_SET_NULL (&leaf_rec->ovfl);
  }

 

PAGE_OVERFLOW 페이지

사용자가 입력하는 키의 크기가 너무 커서 하나의 페이지에 저장할 수 없는 경우가 있습니다. 리프 노드에 저장할 수 있는 키의 크기는 페이지 크기의 1/8을 초과할 수 없습니다. 페이지 크기의 1/8을 초과하는 키는 리프 노드에 저장되지 않고, 하나 이상의 PAGE_OVERFLOW 페이지에 나누어 저장됩니다.

 

1
2
3
/* src/storage/btree_load.h */
 
#define BTREE_MAX_KEYLEN_INPAGE ((int) (DB_PAGESIZE / 8))

 

PAGE_OVERFLOW 페이지는 페이지 타입이 PAGE_OVERFLOW인 페이지입니다. 이 페이지는 페이지 헤더가 없으며, 슬롯 페이지 구조도 아닙니다. 첫 번째 PAGE_OVERFLOW 페이지는 OVERFLOW_FIRST_PART를 저장하고 있고, 두 번째 PAGE_OVERFLOW 페이지부터는 OVERFLOW_REST_PART를 저장하고 있습니다. 전체 키의 길이는 OVERFLOW_FIRST_PART에만 저장되어 있습니다.

 

PAGE_OVERFLOW.png

OVERFLOW_FIRST_REST_PART.png

 

리프 노드의 레코드가 PAGE_OVERFLOW 페이지에 키를 저장하고 있는 경우에는 첫 번째 OID의 슬롯 아이디에 BTREE_LEAF_RECORD_OVERFLOW_KEY 플래그를 설정하며, 레코드 마지막에는 첫 번째 PAGE_OVERFLOW 페이지의 VPID가 저장되어 있습니다.

 

1
2
3
4
5
6
/* src/storage/btree.c */
 
if (btree_leaf_is_flaged (rec, BTREE_LEAF_RECORD_OVERFLOW_KEY))
  {
    key_type = BTREE_OVERFLOW_KEY;
  }

 

PAGE_OVERFLOW 페이지는 인덱스 페이지가 아니라 데이터 페이지입니다. PAGE_BTREE 페이지는 인덱스 페이지로 개수를 세고 있지만, PAGE_OVERFLOW 페이지는 데이터 페이지로 개수를 세고 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
/* src/storage/page_buffer.c - pgbuf_scan_bcb_table () */
 
switch (page_type)
  {
  case PAGE_BTREE:
    show_status_snapshot->num_index_pages++;
    break;
  case PAGE_OVERFLOW:
  case PAGE_HEAP:
    show_status_snapshot->num_data_pages++;
    break;
  ...
}

 

 

노드 분할

 

노드 분할이 발생하는 경우

새로운 키를 저장하기 위한 공간이 부족하거나 기존 레코드의 크기가 증가하는 경우에는 노드 분할이 발생할 수 있습니다. 이를 좀 더 자세히 살펴보면 다음과 같은 경우가 있습니다:

 

1. 새로운 키가 입력되는 경우

2. 기존 키의 크기가 증가하는 경우

3. 기존 레코드에 테이블 레코드의 OID가 추가되는 경우

4. 기존 레코드에 MVCC 아이디가 추가되는 경우

 

1. 새로운 키가 입력되는 경우

새로운 키의 입력은 충분한 여유 공간을 필요로 합니다. 해당 페이지에 여유 공간이 부족하면 노드 분할이 발생할 수 있습니다. 노드 분할이 발생하기 전까지 1978개의 키를 입력했습니다. 이 상태에서 새로운 키를 입력하면 노드 분할이 발생한 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
drop table if exists t1;
create table t1 (c1 int, index i1 (c1));
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 1978
  )
select n from cte;
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
insert into t1 values (1979);
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
/*
<00001> Table_name                       : 'dba.t1'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 1983 (1980 -> 1983)
        Total_value                      : 1983 (1980 -> 1983)
        ...
        Num_leaf_page                    : 3 (2 -> 3)
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 4 (3 -> 4)
        Height                           : 2
        ...
*/

 

2. 기존 키의 크기가 증가하는 경우

기존 키의 크기가 증가하면 레코드의 크기도 증가하게 됩니다. 해당 페이지에 여유 공간이 부족하면 노드 분할이 발생할 수 있습니다. 가변 길이 문자열 타입(VARCHAR)에서는 기존 키의 크기를 변경할 수 있습니다. 노드 분할이 발생하기 전까지 1581개의 키를 입력했습니. 이 상태에서 기존에 입력했던 키의 크기를 크게 변경하면 노드 분할이 발생한 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
drop table if exists t1;
create table t1 (c1 varchar, index i1 (c1));
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 1581
  )
select lpad (n, 4'0'from cte;
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
update t1 set c1 = lpad (c1, 20 /* 4 -> 20 */'9'where c1 = 1581;
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
/*
<00001> Table_name                       : 'dba.t1'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 1585 (1583 -> 1585)
        Total_value                      : 1585 (1583 -> 1585)
        ...
        Num_leaf_page                    : 3 (2 -> 3)
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 4 (3 -> 4)
        Height                           : 2
        ...
*/

 

3. 기존 레코드에 테이블 레코드의 OID가 추가되는 경우

같은 키가 입력되면 중복된 키를 저장하지 않고, 기존 키 뒤에 테이블 레코드의 OID를 추가합니다. 추가된 OID의 크기만큼 레코드의 크기도 증가하게 됩니다. 해당 페이지에 여유 공간이 부족하면 노드 분할이 발생할 수 있습니다. 노드 분할이 발생하기 전까지 1977개의 키를 입력했습니다. 이 상태에서 기존에 입력했던 키와 같은 키를 몇 번 더 입력하면 노드 분할이 발생한 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
drop table if exists t1;
create table t1 (c1 int, index i1 (c1));
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 1977
  )
select n from cte;
 
select count (*from t1 where c1 = 1977;
/* <00001> count(*): 1 */
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
insert into t1 values (1977);
insert into t1 values (1977);
insert into t1 values (1977);
 
select count (*from t1 where c1 = 1977;
/* <00001> count(*): 4 */
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
/*
<00001> Table_name                       : 'dba.t1'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 1981 (1979 -> 1981)
        Total_value                      : 1984 (1979 -> 1984)
        ...
        Num_leaf_page                    : 3 (2 -> 3)
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 4 (3 -> 4)
        Height                           : 2
        ...
*/

 

4. 기존 레코드에 MVCC 아이디가 추가되는 경우

레코드를 변경할 때 MVCC 아이디가 추가되도록 하려면 클라이언트/서버 모드에서 AUTO COMMIT을 비활성화하고 질의를 실행해야 합니다. 이 상태에서 질의를 실행하면 트랜잭션을 시작합니다. 트랜잭션 중에는 키를 삭제해도 물리적으로 삭제하지 않고, DELETE MVCC 아이디를 추가합니다. 추가되는 DELETE MVCC 아이디의 크기만큼 레코드의 크기도 증가하게 됩니다. 해당 페이지에 여유 공간이 부족하면 노드 분할이 발생할 수 있습니다. 노드 분할이 발생하기 전까지 1318개의 키를 입력했습니다. 이 상태에서 AUTO COMMIT을 비활성화하고 몇 개의 기존 키를 삭제하면 노드 분할이 발생한 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/**
 * client-server mode
 *   $ cubrid server start <db_name>
 *   $ csql -u dba <db_name>
 */
 
drop table if exists t1;
create table t1 (c1 int, index i1 (c1));
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 1318
  )
select n from cte;
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
/* csql> ;autocommit off */
delete from t1 where c1 = 1318;
delete from t1 where c1 = 1317;
delete from t1 where c1 = 1316;
delete from t1 where c1 = 1315;
delete from t1 where c1 = 1314;
delete from t1 where c1 = 1313;
 
/* csql> ;line-output on */
show index capacity of t1.i1;
 
/*
<00001> Table_name                       : 'dba.t1'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 1322 (1320 -> 1322)
        Total_value                      : 1322 (1320 -> 1322)
        ...
        Num_leaf_page                    : 3 (2 -> 3)
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 4 (3 -> 4)
        Height                           : 2
        ...
*/

 

사용자가 키를 입력하는 패턴에 따라 달라지는 노드 분할 #1

B+ 트리의 키가 항상 정렬되어 있기 때문에 사용자가 어떤 패턴으로 키를 입력하더라도 B+ 트리의 상태는 항상 동일하다고 착각할 수 있습니다. University of San Francisco의 B+ Tree Visualization을 사용하여 아래 2개의 시나리오 결과를 비교해 보았습니다.

 

1. 시나리오 #1 - 1부터 27까지 오름차순으로 증가하는 패턴으로 키를 입력하는 경우

2. 시나리오 #2 - 1부터 27까지 불규칙 패턴으로 키를 입력하는 경우

 

Max. Degree는 7로 설정했습니다. 페이지에 7번째 키가 입력될 때 노드의 레코드가 반으로 분할됩니다.

 

시나리오 #1 - 1부터 27까지 오름차순으로 증가하는 패턴으로 키를 입력하는 경우

123456789101112131415161718192021222324252627 순서로 키를 입력했습니다.

 

B+ Tree Image 001_crop.png

 

시나리오 #2 - 1부터 27까지 불규칙 패턴으로 키를 입력하는 경우

141326122411221020918278167216515254321171923 순서로 키를 입력했습니다.

 

B+ Tree Image 002_crop.png

 

비교 결과

B+ 트리의 높이가 시나리오 #1은 3이고, 시나리오 #2는 2입니다. B+ 트리의 높이가 높아지면 키를 탐색할 때 더 많은 노드에 접근해야 하므로 성능 저하가 발생 수 있습니다. 사용하는 페이지 수도 시나리오 #1은 11개이고, 시나리오 #2는 8개입니다. 시나리오 #1에서는 가장 오른쪽 리프 노드를 제외하고는 키를 4개 이상 저장하고 있는 리프 노드가 없습니다. 오름차순으로 증가하는 패턴으로 키를 입력하기 때문에 새로운 키는 가장 오른쪽 리프 노드에만 입력되고, 나머지 리프 노드에서는 저장 공간이 낭비됩니다. 시나리오 #1과 시나리오 #2는 키를 입력하는 패턴만 다르고, 나머지는 동일합니다. 사용자가 불규칙 패턴으로 키를 입력할 때는 성능 저하와 저장 공간의 낭비가 발생하지 않았습니다. 그러나 사용자가 항상 같은 패턴으로 키를 입력하는 것을 기대하는 것은 불가능합니다. 사용자는 서비스하고 있는 데이터의 성격에 따라 오름차순, 내림차순 또는 불규칙한 패턴으로 키를 삽입합니다.

 

 

똑똑하게 노드 분할하기

B+ 트리에서는 키가 정렬된 위치에 입력되기 때문에 키가 입력되는 슬롯 아이디의 변화를 통계적으로 분석하면 사용자가 키를 입력하는 패턴을 파악할 수 있습니다. 예를 들어, 오름차순 인덱스라고 가정할 때, 리프 노드의 가장 마지막 슬롯에 새로운 키가 입력되면 오름차순으로 증가하는 패턴으로 키가 입력되고 있다고 예측할 수 있습니다. 반대로 리프 노드의 노드 헤더 바로 다음 슬롯에 새로운 키가 입력되면 내림차순으로 감소하는 패턴으로 키가 입력되고 있다고 것으로 예측할 수 있습니다.

 

노드 헤더는 노드 분할 정보(BTREE_NODE_SPLIT_INFO)를 포함하고 있습니다. 이 정보는 페이지에 입력되는 슬롯 아이디에 대한 누적 이동 평균(pivot)을 계산해서 저장합니다. 새로운 키가 입력될 때마다 btree_split_next_pivot 함수에서 새로운 누적 이동 평균을 계산하고, 노드 분할이 필요한 경우에는 btree_find_split_point 함수에서 현재의 누적 이동 평균을 확인해서 노드의 레코드를 분할합니다.

 

BTREE_NODE_SPLIT_INFO.png

 

1
2
3
4
5
6
#0  btree_split_next_pivot (...) at src/storage/btree.c:12603
#1  0x00007ff421cd3e96 in btree_key_insert_new_key (...) at src/storage/btree.c:27717
#2  0x00007ff421cd335e in btree_key_insert_new_object (...) at src/storage/btree.c:27484
#3  0x00007ff421cc7d9c in btree_search_key_and_apply_functions (...) at src/storage/btree.c:22802
#4  0x00007ff421ccfb63 in btree_insert_internal (...) at src/storage/btree.c:26345
#5  0x00007ff421ccf635 in btree_insert (...) at src/storage/btree.c:26199

 

누적 이동 평균은 다음과 같은 수식으로 계산됩니다. 여기서 CAi는 i+1번째 키가 입력되기 전에 노드 분할 정보에 저장된 누적 이동 평균을 나타냅니다. 또한, Xi+1은 i+1번째 키에 대한 이동 평균을 나타냅니다. 이는 i+1번째 키가 입력된 슬롯 아이디를 i+1번째 키가 입력된 후의 전체 키 개수로 나누어 계산됩니다.

 

Cumulative Moving Average.png

 

노드 분할이 발생할 때 레코드를 분할할 위치는 btree_split_find_pivot 함수에서 결정됩니다. 이 함수는 누적 이동 평균을 직접적으로 반영하지 않습니다. 누적 이동 평균이 0.2f(BTREE_SPLIT_LOWER_BOUND)와 0.8f(BTREE_SPLIT_UPPER_BOUND) 사이에 있는 경우에는 레코드를 반으로 분할하고, 벗어나는 경우에만 누적 이동 평균을 직접적으로 반영하여 레코드를 분할할 위치를 결정합니다. 만약 누적 이동 평균이 0.05f(BTREE_SPLIT_MIN_PIVOT)보다 작으면 0.05f를 사용하고, 0.95f(BTREE_SPLIT_MAX_PIVOT)보다 크면 0.95f를 사용하여 레코드를 분할할 위치를 결정합니다.

 

Cumulative_Moving_Average_Range.png

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#0  btree_split_find_pivot (...) at src/storage/btree.c:12575
#1  0x00007ff421cafaee in btree_find_split_point (...) at src/storage/btree.c:12289
#2  0x00007ff421cb3cbd in btree_split_root (...) at src/storage/btree.c:13889
#3  0x00007ff421cd1934 in btree_split_node_and_advance (...) at src/storage/btree.c:27003
#4  0x00007ff421cc7b93 in btree_search_key_and_apply_functions (...) at src/storage/btree.c:22753
#5  0x00007ff421ccfb63 in btree_insert_internal (...) at src/storage/btree.c:26345
#6  0x00007ff421ccf635 in btree_insert (...) at src/storage/btree.c:26199
 
#0  btree_split_find_pivot (...) at src/storage/btree.c:12575
#1  0x00007ff421cafaee in btree_find_split_point (...) at src/storage/btree.c:12289
#2  0x00007ff421cb1a1e in btree_split_node (...) at src/storage/btree.c:13051
#3  0x00007ff421cd28f9 in btree_split_node_and_advance (...) at src/storage/btree.c:27290
#4  0x00007ff421cc7b93 in btree_search_key_and_apply_functions (...) at src/storage/btree.c:22753
#5  0x00007ff421ccfb63 in btree_insert_internal (...) at src/storage/btree.c:26345
#6  0x00007ff421ccf635 in btree_insert (...) at src/storage/btree.c:26199

 

사용자가 키를 입력하는 패턴에 따라 달라지는 노드 분할 #2

 

1. 오름차순으로 증가하는 패턴으로 키를 입력하는 경우

새로운 키는 항상 페이지의 마지막 슬롯에 입력되기 때문에 노드 분할 정보에서 누적 이동 평균은 0.95f(BTREE_SPLIT_MAX_PIVOT)보다 큰 값을 유지합니다. 따라서 노드 분할이 발생할 때 누적 이동 평균이 0.95f보다 크기 때문에 분할되는 왼쪽 페이지에는 전체 레코드 길이의 95%가 이동하고, 오른쪽 페이지에는 나머지 5%가 이동합니다. SHOW INDEX CAPACITY에서 Total_free_space_non_ovf를 보면 공간 낭비가 없는 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
set system parameters 'cte_max_recursions=100000';
 
drop table if exists t_asc;
create table t_asc (c1 int, index i1 (c1));
 
insert into t_asc with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 100000
  )
select n from cte;
 
/* csql> ;line-output on */
show index capacity of t_asc.i1;
 
/*
<00001> Table_name                       : 'dba.t_asc'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 100206
        Total_value                      : 100206
        ...
        Num_leaf_page                    : 104
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 105
        Height                           : 2
        ...
        Total_space                      : '1.6M'
        Total_used_space_non_ovf         : '1.5M'
        Total_free_space_non_ovf         : '101.9K'
        ...
*/

 

pivot_asc.png

 

2. 내림차순으로 감소하는 패턴으로 키를 입력하는 경우

새로운 키는 항상 페이지의 1번 슬롯에 입력되기 때문에 노드 분할 정보에서 누적 이동 평균은 0.05f(BTREE_SPLIT_MIN_PIVOT)보다 작은 값을 유지합니다. 노드 분할이 발생할 때 누적 이동 평균이 0.05f보다 작기 때문에 분할되는 왼쪽 페이지에는 전체 레코드 길이의 5%가 이동하고, 오른쪽 페이지에는 나머지 95%가 이동합니다. SHOW INDEX CAPACITY에서 Total_free_space_non_ovf를 보면 공간 낭비가 없는 것을 확인할 수 있습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
set system parameters 'cte_max_recursions=100000';
 
drop table if exists t_desc;
create table t_desc (c1 int, index i1 (c1));
 
insert into t_desc with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 100000
  )
select n from cte order by n desc;
 
/* csql> ;line-output on */
show index capacity of t_desc.i1;
 
/*
<00001> Table_name                       : 'dba.t_desc'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 100206
        Total_value                      : 100206
        ...
        Num_leaf_page                    : 104
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 105
        Height                           : 2
        ...
        Total_space                      : '1.6M'
        Total_used_space_non_ovf         : '1.5M'
        Total_free_space_non_ovf         : '101.9K'
        ...
*/

 

pivot_desc.png

 

3. 불규칙 패턴으로 키를 입력하는 경우

키가 입력될 때마다 키가 입력되는 슬롯 아이디에 대한 누적 이동 평균이 갱신됩니다. 그래프를 보면 0.5f에서 크게 벗어나지 않고 있습니다. 노드 분할이 발생할 때 누적 이동 평균이 0.2f(BTREE_SPLIT_LOWER_BOUND)와 0.8f(BTREE_SPLIT_UPPER_BOUND) 사이에 있기 때문에 분할되는 왼쪽 페이지와 오른쪽 페이지에 각각 전체 레코드 길이의 50%를 이동합니다. SHOW INDEX CAPACITY 결과를 확인하면 오름차순 및 내림차순 패턴과 비교했을 때 Total_free_space_non_ovf가 큰 편입니다. 하지만 불규칙 패턴에서는 분할되는 왼쪽과 오른쪽 페이지 양쪽에 새로운 키가 입력될 가능성이 있으므로, 잦은 노드 분할을 방지하기 위해 적당한 여유 공간을 유지하는 것이 좋습니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
set system parameters 'cte_max_recursions=100000';
 
drop table if exists t_random;
create table t_random (c1 int, index i1 (c1));
 
insert into t_random with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 100000
  )
select n from cte order by random ();
 
/* csql> ;line-output on */
show index capacity of t_random.i1;
 
/*
<00001> Table_name                       : 'dba.t_random'
        Index_name                       : 'i1'
        Btid                             : '(0|4160|4161)'
        Num_distinct_key                 : 100254
        Total_value                      : 100254
        ...
        Num_leaf_page                    : 128
        Num_non_leaf_page                : 1
        Num_ovf_page                     : 0
        Num_total_page                   : 129
        Height                           : 2
        ...
        Total_space                      : '2.0M'
        Total_used_space_non_ovf         : '1.5M'
        Total_free_space_non_ovf         : '482.4K'
        ...
*/

 

pivot_random.png

 

 

루트 노드 → 브랜치 노드 → 리프 노드 순서의 노드 분할

노드 분할은 루트 노드 → 브랜치 노드 → 리프 노드 순서로 발생합니다. 키는 리프 노드에 입력되기 때문에 처음에는 리프 노드에서 노드 분할이 발생할 것으로 생각할 수 있습니다. 그러나 실제로는 루트 노드부터 시작하여 새로운 키를 입력할 수 있는 여유 공간이 있는지 확인합니다. 루트 노드에 공간이 부족하다면 키가 입력되지 전에 루트 노드에서부터 노드 분할이 발생합니다. 나중에 리프 노드에서 분할이 발생했을 때 분할된 페이지를 구분하기 위한 분할 키를 루트 노드와 브랜치 노드에 저장해야 하기 때문에 미리 여유 공간이 확보하는 것입니다.

 

아래는 B+ 트리의 높이가 1에서 2가로 증가하는 과정입니다. B+ 트리의 높이 1일 때는 리프 노드가 1개만 존재합니다. 리프 노드에 새로운 키를 저장할 수 있는 공간이 부족할 때 노드 분할이 발생합니다. 루트 노드의 분할은 새로운 키가 입력되기 전에 발생하며, 노드 분할이 완료된 후에 정렬된 위치에 새로운 키가 입력됩니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
drop table if exists t1;
create table t1 (c1 int auto_increment, index i1 (c1));
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < 1012
  )
select null from cte;
 
insert into t1 values (null); /* 1013 */

 

btree_split_root_1-to-2.png

 

아래는 B+ 트리의 높이가 2에서 3으로 증가하는 과정입니다. 리프 노드에 새로운 키를 저장할 공간이 부족해서 노드 분할이 발생한 것이 아니라 루트 노드에 여유 공간이 부족해서 노드 분할이 발생했습니다. 루트 노드의 노드 분할이 완료된 후에는 정렬된 위치의 리프 노드에 새로운 키가 입력된 것을 확인할 수 있습니다. 이 때 리프 노드의 공간은 충분하기 때문에 노드 분할이 발생하지 않았습니다. 루트 노드가 분할하면서 B+ 트리의 높이가 2에서 3으로 증가할 때 새로운 브랜치 노드 2개가 추가됩니다. 루트 노드와 리프 노드의 VPID는 변경되지 않고, 새로운 브랜치 노드에 리프 노드의 레코드를 이동합니다.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
 * standalone mode
 *   $ csql -u dba <db_name> -S
 */
 
set system parameters 'cte_max_recursions=1000000';
 
insert into t1 with recursive cte (n) as (
    select 1
    union all
    select n + 1 from cte where n < (976629 - 1013)
  )
select null from cte;
 
insert into t1 values (null); /* 976630 */

 

btree_split_root_2-to-3.png

 

 

참고

1. [CUBRID Blog] CUBRID 슬랏 페이지(slotted page) 구조 살펴보기

2. [NAVER D2] CUBRID Internals - 키와 인덱스의 관계

3. [University of San Francisco] B+ Tree Visualization

4. [Wikimedia] Moving average - Cumulative average

 


  1. CUBRID 슬랏 페이지(slotted page) 구조 살펴보기

    내가 INSERT한 레코드는 어떤 구조로 파일에 저장될까? 운전을 하다 보면 가끔 엔진이나 미션 등이 어떻게 동작하는지 궁금할 때가 있다. 연료가 어떻게 엔진에 전달되는지, 엔진은 어떻게 연료를 연소하여 동력을 얻는지, 또 이를 미션에 전달하여 어떻게 차를 움직이게 하는지 등에 대해 말이다. CUBRID를 사용하는 사용자들도 가끔 이런 호기심이 생기지 않을까? 이런 호기심 많은 사용자를 위한 첫번째로 "사용자가 INSERT한 레코드는 어떤 구조로 파일에 저장될까?"란 주제로 이야기 해보려고 한다. 티타임을 이용해 가벼운 마음으로 읽을 수 있도록 작성하였으니 여유 시간에 재미로 읽을 수 있길 바래본다. 슬랏 페이지(slotted page) 구조 CUBRID도 OS나 다른 DBMS와 같이 성능상의 이유로 페이지(page) 단위 디스크 I/O를 수행한다. CUBRID 페이지 크기는 최소 4KB ~ 최대 16KB 이며, 디폴트로 16KB 디스크 페이지 크기를 사용한다. 슬랏 페이지 구조란 이런 페이지에 데이터 저장을 구조화하는 하나의 방식을 말한다. CUBRID 사용자가 INSERT 구문을 사용하여 데이터(레코드)를 입력하게 되면, 여러 처리를 거친 후 결국 디스크 페이지에 입력된 데이터가 쓰여지게 ...
    Date2019.06.18 Category제품 여행 By민준 Views2415 Votes0
    Read More
  2. Node.js 사용자들을 위한 CUBIRD 연동 방법 [4탄(최종)-CUBRID와 Node.js 커넥션 풀(Connection Pool)설정]

    1. 환경소개 OS CentOS7 64비트 Node.js 10.15.3 버전 Npm 6.4.1 버전 java 1.8.0_201 버전 Editer Eclipse DB CUBRID 10.1 (10.1.2.7694-64632b2)(64비트) 2. 커넥션 풀 (Connection Pool) 이란? 2-1) 개념 ● 데이터베이스와 연결된 커넥션을 미리 만들어서 풀(pool) 속에 저장해 두고 있다가 필요할 때 커넥션을 풀에서 쓰고 다시 풀에 반환하는 기법을 말합니다. ● 커넥션 풀을 사용하면 커넥션을 생성하고 닫는 시간이 소모되지 않기 때문에 애플리케이션의 실행 속도가 빨라지며, 또한 한 번에 생성될 수 있는 커넥션 수를 제어하기 때문에 동시 접속자 수가 몰려도 웹 애플리케이션이 쉽게 다운되지 않습니다. ● 웹 컨테이너가 실행되면 커넥션(Connection) 객체를 미리 풀(pool)에 생성해 둡니다. ● DB와 연결된 커넥션(Connection)을 미리 생성하고, 풀(pool) 속에 저장했다가 필요할 때에 가져다 쓰고 반환합니다. ● 미리 커넥션(Connection)을 생성했기 때문에 데이터베이스에 부하를 줄이고 유동적으로 연결을 관리할 수 있습니다. 3. 커넥션 풀 (Connection Pool) 환경 설정 ● node-cubrid는 자체적인 커넥션 풀(Connection Pool) 기능을 제공하고 있지는 않습니다...
    Date2019.06.13 Category제품 여행 By원종민 Views4696 Votes0
    Read More
  3. Node.js 사용자들을 위한 CUBIRD 연동 방법 [3탄-Callback과 Promise 패턴 개념 소개]

    개요. ●Callback과 Promise 패턴을 이야기 앞서 동기식과 비동기식 프로그래밍을 소개하겠습니다. 1. 동기식 프로그래밍 vs 비동기식 프로그래밍 1-1) 동기식 프로그래밍 ● 어떤 작업을 요청한 후 그 작업이 완료되기까지 기다렸다가 응답을 받아 처리하는 것을 말합니다. <예제 코드> <예제 결과> 동기식 프로그래밍 function addition(x){ return x+x; } var num = addition(2); console.log(num); //4 * 순차적으로 해당 덧셈작업이 완료되기 까지 기다렸다가 결과 값을 보여주게 됩니다. 1-2) 비동기식 프로그래밍 ● 어떤 작업을 요청한 후 다른 작업을 수행하다가 이벤트가 발생하면 그에 대한 응답을 받아 처리하는 것을 말합니다. <예제 코드> <예제 결과> 비동기식 프로그래밍 function addition(x, callback){ setTimeout(callback, 100, x+x); } var num = 0; addition(2,function(x){ num = x; }); console.log(num); //0 * setTimeout은 비동기를 표현하기 위해 사용하였습니다. * 0.1초 후 callback 함수가 실행되는 코드입니다. 해당 코드를 동기식으로 바라보면, console.log에는 4라는 결과 값이 출력되어야 하지만, 결과는 0이 됩니다. 그 이유로 console.log...
    Date2019.06.11 Category제품 여행 By원종민 Views831 Votes0
    Read More
  4. Node.js 사용자들을 위한 CUBIRD 연동 방법 [2탄-CUBRID와 Node.js 연동]

    1. test 디렉토리 & 파일 생성 1-1) 라우터 파일 생성 ● /routes/test.js 1-2) view 디렉토리& 파일 생성 ● views/test 디렉토리 생성 ● views/test/test_view.ejs 파일 생성 1-3) 프로젝트 최종 결과 2. node-cubrid 드라이버 모듈 설치 ● 모듈 공식 사이트 : https://www.npmjs.com/package/node-cubrid 2-1) node-cubrid 모듈 설치 ● npm install node-cubrid --save ● package.json 에서 node-cubrid 모듈 설치 확인 3. node-cubrid 모듈 적용 및 DB 연동 3-1) 컨트롤러(app.js)에서 라우팅(test.js) 설정. - app.js의 25번째 줄과 동일하게 app.use('/test',require('./routes/test')); 추가 app.js var createError = require('http-errors'); var express = require('express'); var path = require('path'); var cookieParser = require('cookie-parser'); // 접속한 클라이언트의 쿠키 정보에 접근하기 위한 모듈 var logger = require('morgan'); // 클라이언트의 HTTP 요청 정보를 로깅하기 위한 모듈 var indexRouter = require('./routes/index'); var usersRouter = require('./ro...
    Date2019.06.04 Category제품 여행 By원종민 Views2466 Votes0
    Read More
  5. Node.js 사용자들을 위한 CUBIRD 연동 방법 [1탄-Node.js 환경 설치 및 개념 소개]

    1. 환경소개 OS Window 10 64비트 Node.js 10.15.3 버전 Npm 6.4.1 버전 java 1.8.0_201 버전 Editor Eclipse DB CUBRID 10.1 (Window 10 64비트) / CUBRID Manager 10.1 (Window 10 64비트) 2. Node.js 소개 Node.js란? 1) 개념 - Node.js는 확장성 있는 네트워크 애플리케이션 개발에 사용되는 소프트웨어 플랫폼입니다. - 자바스크립트를 서버에서도 사용을 할 수가 있도록 설계가 되어 있는 서버개발을 위해서 나온 언어로 v8이라는 자바스크립트 엔진 위에서 동작하는 이벤트 처리 I/O 프레임워크로 웹서버와 같이 확장성 있는 네트워크 프로그램을 제작하기 위하여 고안이 된 것입니다. 2) 사용 이유 - 간단히 Node.js를 소개하면, 이전까지 Server-Clint 웹사이트를 만들 때 웹에서 표시되는 부분은 javascript를 사용하여 만들어야만 했으며, 서버는 ruby, java 등 다른 언어를 써서 만들어야 했는데, 마침내 한가지 언어로 전체 웹페이지를 만들 수 있게 된 것입니다. express란? 1) 개념 - 노드(NodeJS) 상에서 동작하는 웹 개발 프레임워크로 간편하게 사용하기 위해 사용합니다. * 프레임워크(Framework)란 : 소프트웨어의 구체적인 부분에 해당하는 설계와 구현을...
    Date2019.06.03 Category제품 여행 By원종민 Views2159 Votes0
    Read More
  6. No Image

    분산 시스템으로서의 DBMS, 그리고 큐브리드

    가끔 퇴근길에 서점에 들르곤 한다. 직업이 직업이라 그런진 몰라도 항상 IT코너에 머물러 어떤 새로운 책들이 출간되었나 보게 된다. 그러다보면 최근 유행하는 컨셉이나 아키텍쳐, 프로그래밍 언어나 개발방법론 등에 대해 트렌드가 뭔지 관찰하려고 안해도 자연히 접하게 되는 것 같다. 그 중 최근 유행처럼 사람들 입에 오르내리기도 하고 책으로 소개되기도 하는 개념들 중 MSA(Micro Service Architecture)라는 것이 있다. 뭔가 하고 들여다보니 MSA 개념에서 다루고 있는 '독립적으로 수행되는 최소단위의 서비스' 그리고 그 서비스들의 집합으로서의 시스템과 시스템의 분할에 관한 관점 및 해석은 십수년전 주목받던 SOA(Service Oriented Architecture)가 지향하는 서비스를 구성하는 기능별 시스템의 분할과 크게 다르지 않다. 이 글은 MSA와 SOA가 얼마나 비슷한 사상으로 소개된 개념인지를 이야기하고자 함이 아니다. 예전에도 의미있게 다뤄졌고 지금도 의미있게 받아들여지는 이러한 개념들이 시스템의 관점에서 더 좁게는 DBMS라는 시스템 소프트웨어적 관점에서 어떻게 해석될 수 있는가를 간단하게 짚어보고자 함이다. MSA의 개념이 제대로 구현되기 위해서...
    Date2019.03.29 Category나머지... By조성룡 Views1363 Votes0
    Read More
  7. [CUBRID 유틸리티] restoreslave에 대하여 알아보자.

    CUBRID는 10.1 version 이상부터 restoreslave란 명령어를 제공한다. CUBRID 9.3.x version 까지는 온라인 재구성을 위해 자체적으로 제공되는 shell script를 사용하였으나, 10.1 version 이상부터는 restoreslave 명령을 통해 보다 편하게 작업을 할 수있다. 해당 명령어를 통해 master의 구동 상태와는 상관 없이, slave를 재구축 할 수 있으며, 시나리오는 아래와 같다. 1. HA 서비스 중, 이중화가 깨졌을때. (1) 필요 환경 : master - slave의 이중화 환경. (2) 필요 파일 : master 서버의 backup file (3) 시나리오 - DB의 이중화가 깨지는 것을 재연하기 위해 slave의 db_ha_apply_info의 데이터를 삭제한다. - slave의 heartbeat를 종료한다. slave) $> csql -S -u dba --sysadm demodb sysadm> delete from db_ha_apply_info; - 위의 이중화 로그를 삭제하였을 경우, 동기화는 더이상 이루어지지 않는다. - 위의 행위로 인하여 DB 이중화가 깨졌다고 판단하고 이중화복구를 진행하여보자. - master에서 backup 받은 backup file은 slave에 옮겨놓은 상태이다. slave) $> cubrid service stop -- cubrid sevice 종료 $> ps -ef | grep cubrid -- CUBRID process가 모두...
    Date2019.03.29 Category제품 여행 By박동윤 Views746 Votes0
    Read More
  8. CUBRID 커버링 인덱스(covering index) 이야기

    CUBRID 2008 R4.0 버전 이상부터는 커버링 인덱스를 지원합니다, 커버링 인덱스는 “A covering index is a special case where the index itself contains the required data field(s) and can return the data.”라고 하는데 원문을 해석하면 커버링 인덱스는 인덱스 자체에 필수 데이터 필드가 들어 있고 데이터를 반환할 수 있는 특별한 인덱스라고 해석됩니다, 다시 정리하면 하나의 질의 내에 특정 인덱스를 구성하는 컬럼만 사용하는 경우 커버링 인덱스를 사용하게 됩니다. 아래 예제-1)에서 SELECT 질의의 WHERE 조건에 사용된 컬럼 i와, SELECT 리스트로 주어진 컬럼 j는 모두 인덱스 idx를 구성하는 컬럼입니다. 이와 같은 경우에 CUBRID는 SELECT 질의를 수행할 때 커버링 인덱스를 스캔 하게 됩니다, 이는 하나의 인덱스가 SELECT 문이 요구하는 조건과 결과를 모두 포함하고 있기 때문에 가능한 일입니다. 예제-1) CREATE TABLE tbl (i INT, j INT); CREATE INDEX idx ON tbl(i, j); SELECT j FROM tbl WHERE i > 0; 그렇다면 왜 커버링 인덱스라는 개념이 필요할까?, 우선 설명에 앞서 우선 CUBRID의 인덱스 구조에 대해 간단하게 설명하겠습니다. CU...
    Date2019.02.28 Category제품 여행 By정만영 Views1821 Votes0
    Read More
  9. CM을 통해 SQL을 분석해보자.

    SQL을 수행하다 보면 SLOW SQL이 많이 발생합니다. 이럴때, 해당 SQL의 실행계획을 확인 함으로써, 지연을 발생시키는 부분을 쉽게 찾을 수 있습니다. 1. SQL 서식화. - 보통 SQL을 LOG에서 copy 할경우 가시적으로 보기 힘든경우 사용합니다. 2. 질의 실행 계획보기. - 질의편집기에 SQL을 작성 후, 질의 실행계획보기를 통하여 해당 SQL의 실행계획을 확인 할 수 있습니다. 2.1 질의실행계획보기 --계속 - 질의 실행 계획보기를 실행 시, 질의 계획의 원본, 트리출력, 그래픽출력 등으로 쉽게 확인이 가능합니다. - 이글에서 주로 다룰 내용은 트리출력이며, 보다 사용자가 보기 편리한 구조로 이루어져 있습니다. - 해당 내용을 분석하면, olympic 테이블과 record 테이블은 서로 inner join으로 조인이 이루어 집니다. - olympic 테이블은 FULL SCAN이 일어났으며, 모두 디스크 io가 발생하였습니다. - record 테이블은 primary key(host_year)을 사용하여 인덱스 범위검색을 하였습니다. - 이때, olympic 테이블에서 추출한 레코드는 총 25개 이며, record 테이블에서는 2000개의 레코드를 추출하였습니다. - olympic 테이블에서의 전체 row는 25건이며, 페이지로는 1게 ...
    Date2019.01.01 Category제품 여행 By박동윤 Views1296 Votes0
    Read More
  10. No Image

    실패하지 않는 마이그레이션을 위해서 고려해야 될 사항

    실패하지 않는 마이그레이션을 위해서 고려해야 될 사항 클라우드 전환에 따라 기존 유지보수 비용이 높은 UNIX 체계에서 Linux 체계로 전환하면서 오픈소스 유형의 SW로 전환하는 사례가 많아졌다. 도입단가, 비용문제로 고객과 SW밴더간의 이견을 좁히지 못해서 대체 SW로 전환하는 사례도 있다. 그 이외에도 노후장비 교체시기에 SW까지 함께 교체하는 경우도 있는데 OS 및 WAS, 그리고 Database System과 같은 기업 서비스의 근간이 되는 Package SW들이 주 대상이 된다. 위 3가지 중에 대체 SW로 변환하는데 있어 어려움이 발생하는 영역으로 WAS 및 Database System 부분이 될 수 있는데 그 중에서도 Database System이 난위도가 높으며 성공여부를 가늠하는 핵심적인 부분이기도 하다. 다른 대체 SW로 전환하는 작업을 Win-Back 마이그레이션이라는 용어를 사용하기도 하는데 성공적으로 수행하기 위해서 꼼꼼하게 대비해야하는 사항들이 있다. 다수의 DBMS 전환작업을 해오면서 성공과 실패를 통해 경험한 내용을 기반으로 Win-Back 마이그레이션 프로젝트를 수행하는데 고려되어야 할 사항들에 대해서 공유하고자 한다. 1. 제품선정(RDB) DBA또는 그에 준하는 역할을...
    Date2018.12.31 Category나머지... By김창휘 Views7317 Votes0
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 16 Next
/ 16

Contact Cubrid

대표전화 070-4077-2110 / 기술문의 070-4077-2113 / 영업문의 070-4077-2112 / Email. contact_at_cubrid.com
Contact Sales